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EXECUTIVE SUMMARY 

This deliverable, which is intricately linked to Task 3.3 on "Network Load Balancing" is a critical 

milestone in the Grant Agreement's overarching goal of using Connected and Autonomous Vehicles 

(CAVs) to redefine traffic management, optimize transport network performance, and address load 

balancing and dynamic optimization challenges. The study gives a complete update on the domain's 

cutting-edge solutions, as well as a detailed description of the joint efforts achieved thus far.  

The background section highlights the importance of socially desirable routing in ensuring optimal 

system performance, establishing the framework for the joint initiative's primary focus—the 

refinement of social routing algorithms. This change, intended to direct travellers toward socially 

desired routes, is considered the key to establishing network load balancing over several 

spatiotemporal scales. The collaborative effort involves the enhancement of the social routing model, 

the multi-modal integration, the tailored pre-trip route recommendations, and the introduction of 

smart algorithms and machine learning applications. 

Fleet optimization strategies and system-optimized routing techniques for fleet vehicles are 

investigated, and AI algorithms for optimizing CAV scheduling and travel routes are developed. The 

process begins with a careful state-of-the-art review that covers essential areas such as signal 

vehicle coupling control, social routing dynamics, prediction models, and optimization techniques. 

The following sections provide a thorough review of tasks completed in the past months, 

demonstrating the depth and breadth of the collective effort. Finally, this deliverable exemplifies a 

collaborative initiative poised to shape the future of transportation network optimization through the 

integration of emerging technologies and strategic insights, demonstrating a commitment to 

innovation and excellence in the transportation domain. 

 

Keywords: Network Load Balancing, Connected Autonomous Vehicles (CAVs), Social routing, 

Demand Responsive Transport, Demand Prediction 
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1 INTRODUCTION 

This deliverable is tied to Task 3.3 “Network Load Balancing” problems and hence to the tasks’ 

outcomes. As per the Grant Agreement, this task intends to create cutting-edge technologies to 

assist traffic management and utilize the potential of CAVs to better balance demand and supply, 

optimize the overall transport network's performance, and assist the network in recovering from small 

traffic incidents. This deliverable incorporates state-of-art updates on the existing solutions in 

transport network load balancing and dynamic optimization. It also provides an update on the work 

done to date regarding the identified problems related to traffic network load balancing and dynamic 

optimization. The objectives for this deliverable have been met completely. 

1.1 Background 

Network load balancing tries to rebalance demand throughout the network in order to improve 

system performance and, as a result, the mobility of products and people. Whilst the majority of 

network agents are primarily concerned with their own utility when making decisions, societal 

objectives frequently conflict with individual ones, necessitating central coordination to improve the 

mobility network. Centrally controlled traffic management solutions based on route guidance can 

both direct or encourage mobility system actors toward socially desirable routes. Overlooking user 

demands and responses frequently results in unfulfilled strategies. Guidance techniques should not 

only direct users toward socially beneficial routes based on present and future network conditions 

but should also factor in the consequences of guidance in forecasts. Choice dynamics occur not only 

among individuals who take advise, but also among those who are not reached by guidance systems 

or do not comply. Behavioural responses, in any case, influence trip times and should be anticipated. 

1.2 Objectives and contributions  

The purpose of this collaborative effort is to enhance and expand the existing social routing model, 

particularly focusing on modifying the distribution of passenger demand. The goal is to guide 

travellers towards socially desired routes, effectively achieving network load balancing for a single 

mode of transport on various spatiotemporal scales. The approach aims to benefit from multi-modal 

integration, dynamically allocating public transport vehicles to alleviate congestion in specific 

network areas. The strategy involves refining social routing algorithms to balance societal and 

individual user needs by rerouting a fraction of the demand and fleet to take user-acceptable detours 

for overall system benefit. The project also emphasizes providing personalized pre-trip route advice 

through dynamic scales, considering user-induced constraints and objectives through multi-objective 

optimization. Additionally, the initiative includes upgrading solutions based on smart algorithms, 

employing machine learning to enhance fleet occupancy, automation, and optimization potential for 

passenger transport across both road and air. Fleet optimization techniques for operators will be 

developed to facilitate network load balancing, considering dynamic and stochastic network travel 

times. System-optimized routing techniques for fleet vehicles will be explored based on the service's 

penetration within the overall traffic system. Lastly, AI algorithms will be developed to optimize the 

scheduling and travel routes of Connected and Autonomous Vehicles  connected to a hierarchical 

traffic management system, aiming to maximize or For the above objectives to be met in this task,  

we have first conducted a detailed state-of-the-art review regarding  the  impact of signal vehicle 

couple control for load balancing, social routing, prediction models for demand responsive transport 

and optimization techniques for urban logistics. The progress of the tasks performed during the last 

months have been summarized in this deliverable. 
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1.3 Outline of the deliverable 

Section 2 provides a state-of-the art literature review about four identified problem domains namely, 

traffic management using signal vehicle couple control, social routing, prediction models for demand-

responsive transport, and optimization techniques for urban logistics which all are related to network 

load balancing. Section 3 provides detailed updates on the work performed to date for the above-

mentioned problems related to network load balancing and dynamic optimization. Section 4 

concludes the document by providing thoughtful insights regarding the work performed and future 

directions. 
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2 BACKGROUND AND REVIEW OF EXISTING SOLUTIONS IN 
NETWORK LOAD BALANCING AND DYNAMIC 
OPTIMIZATION 

This section is dedicated to the state-of-the-art literature review on traffic management with signal 

vehicle couple control, social routing, prediction models for demand-responsive transport and 

optimization techniques for urban logistics. 

2.1 Traffic management: signal vehicle couple control 

In Madrid, the Use Case (UC) will centre on the management of events/incidents for transport 

network functionalities to be restored. This will consider linked and driverless vehicles, which are not 

yet widely implemented in cities. As a result, the suggested Use Case will be tested using transport 

simulators (such as Aimsun), and two simulations will be created: one for mixed traffic (CAVs and 

conventional cars) and one for totally autonomous scenarios (high CAV penetration). The cars in the 

simulated environment will be equipped with an on-board unit or smart gadget that will allow them to 

communicate with their surroundings. There will be two categories of events considered: scheduled 

events (such as roadworks) and unexpected events (such as accidents). Our system will provide the 

critical functionalities from the Use Case, such as evacuation routes - lane indication, prioritization 

of emergency vehicles, tunnel evacuation management compliance with tunnel management 

regulations, control of access on the ring highway, lane management, alternative routes for avoiding 

specific road stretches in the M-30, and routes using alternative modes of transportation instead of 

road transport and private vehicles.  

Given that one of the primary goals of CONDUCTOR is to develop new tools for traffic management 

in future mobility scenarios, CAVs could be a valuable asset in achieving this goal in the next 

decades. One of the most significant advances for coordinated traffic management that CAVs will 

bring is Signal Vehicle Coupled Control, which aims to improve traffic control performance by 

leveraging real-time information exchange between signals and vehicles, as well as the 

simultaneous optimization of signal timing/phases and CAV trajectories and/or routes, to improve 

the overall traffic network performance. 

In isolated signalized crossings, a model for coupled control of connected autonomous vehicles 

(CAVs) and traffic lights is proposed in this research study (Wang et al., 2023) The model estimates 

the time it will take for CAVs to arrive at stop lines by utilizing real-time data on their position and 

speed. Phase saturation is maximized by optimizing traffic signal timing based on arrival time. 

Furthermore, CAVs are designed with a speed profile that maximizes speed when they approach 

the stop line. The technique is tested in the paper using NetLogo, a multiagent microscopic simulator, 

and analysis and verification are carried out at a Weihai intersection. The results of the simulation 

show that the proposed model performs much better than models that merely optimize the speed 

profile of CAVs and fixed traffic signal timing. The suggested methodology cuts the average number 

of stops by 47.0% and the waiting time by 41.3% when compared to these methods. With a 

performance gain of roughly 10% over peak hours, the optimization performs best during off-peak 

hours. In addition to stressing the significance of considering both traffic signal timing and the speed 

profile of CAVs for improved performance, the article highlights the potential of linked control in 

enhancing traffic efficiency and signal use at intersections. The suggested approach works well to 

ease traffic and enhance intersections' general operational effectiveness.  
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In this paper (Debarshi et al., 2022), a novel controller for autonomous cars is presented with 

particular attention to lateral path-tracking and longitudinal cruise control. An Extended Minimal 

Resource Allocating Network (EMRAN), a neural network with an adjustable Radial Basis Function 

(RBF), is used by the suggested controller, known as EMRAN-aided. To deal with ambiguities and 

outside disruptions, this network uses an online learning algorithm and a feedback error learning 

mechanism. The difficulties of autonomous driving are discussed, with a focus on the necessity of 

simultaneous control of both lateral and longitudinal dynamics. The EMRAN-aided methodology is 

contrasted with conventional techniques like Stanley controllers and PID controllers. The simulation 

results in diverse scenarios, with varying speeds and external disturbances, indicating that the 

EMRAN-aided controller performs better than the others in terms of tracking performance. Because 

of EMRAN's special qualities, which include its resilience to uncertainty, online adaptability, and 

compatibility with any feedback controller, it has great promise for use in autonomous car control 

systems. In summary, the research highlights the advantages of using EMRAN in real-time 

longitudinal and lateral control of autonomous cars and summarizes the contributions made.  

To improve torque output stability and hydraulic energy utilization, a unique mechatronics-electro-

hydraulic power coupling electric vehicle (MEH-PCEV) is presented in this study work (Yang et al., 

2023). The vehicle combines an electric motor and a hydraulic pump/motor into one unit for mutual 

energy transfer. A cluster analysis technique is used to categorize road test data for MEH-PCEVs 

with multiple energy sources, offering insights for creating rule-based energy management strategies 

(RB-EMS). To address torque output anomalies in RB-EMS, an inverse thinking fuzzy logic 

optimization energy management method (FLO-EMS) is developed, which optimizes energy flow 

and modifies electromagnetic torque in real-time. The findings of the simulation show that the 

implementation of FLO-EMS reduces electric peak torque and increases the percentage of electrical 

energy recovery by stabilizing the production of both electric and total torque. A significant 

improvement in the motor operating point's overall efficiency leads to a 24.42% reduction in the rate 

of energy consumption. In addition to offering a fuzzy logic optimization technique for real-time torque 

adjustment in MEH-PCEVs, the research advances the development of electro-hydraulic coupling 

systems and illustrates gains in overall performance and energy efficiency. The work is anticipated 

to have an impact on electro-hydraulic coupling systems' engineering applications.  

 The study (Louati et al., 2020) tackles the difficulties that traffic control authorities encounter in 

contemporary cities, with a particular emphasis on the intricacies that result from increased 

urbanization. Without considering early prediction and estimation of occurrences, most of the Traffic 

Signal Control Systems (TSCS) that are now in use in the literature primarily provide real-time control 

for traffic difficulties that are discovered. Furthermore, problems concerning the dispatch and arrival 

of emergency vehicles are rarely considered. The paper presents PANNAL, a predictive and reactive 

TSCS, to fill in these gaps. PANNAL is a multi-agent system that uses the Longest Queue First 

Maximal Weight Matching algorithm (LQF-MWM), Convolutional Neural Networks (CNN), and 

Artificial Neural Networks (ANN) in each of its individual agents. The integration facilitates adaptive 

signal sequences and durations, hence prioritizing emergency vehicles' crossing. For coordination, 

the agents use a heterarchical design. For simulation and assessment, the most recent version of 

VISSIM, a traffic simulation program, is used. For benchmarking, the study uses algorithms, 

scenarios, KPIs, and assessment findings from current literature. These algorithms are proactive, 

exhibiting competitive outcomes and excellent performance in traffic management during periods of 

erratic traffic. The research aims to contribute to the development of advanced TSCS that not only 

react to current traffic issues, but also predict and estimate them in advance while addressing the 

needs of emergency vehicles.  

This work (Dai et al., 2023) explores the optimum of traffic control systems at signalized crossings 

by considering vehicle trajectories, lane allocations, and signal timings simultaneously. Although 

current research focuses on vehicle and signal control, lane assignments are typically predetermined 
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and set. To incorporate these elements under mixed traffic situations including both connected 

automatic vehicles and human-driven vehicles (HVs), the research presents a two-dimensional 

(spatiotemporal) control method. The work uses a piece-wise linear programming approach to 

improve lane configurations and signal timings using pseudo-platoons. To produce smoother vehicle 

trajectories, vehicle trajectory control is also implemented. Through numerical experiments, the 

suggested control mechanism is assessed and found to perform better than actuation control in 

terms of vehicle travel time in both under- and over-saturated traffic scenarios. The study recognizes 

that CAVs and HVs will coexist while moving toward complete CAV deployment, and it attempts to 

offer a workable control structure that considers HV limits and capitalizes on CAV capabilities. The 

study highlights the necessity for combined optimization of traffic signals and vehicle trajectories 

(Signal-Vehicle Coupled Control, or SVCC), and examines relevant works in CAV-based traffic signal 

control and vehicle trajectory planning. This research tackles the mixed-autonomy traffic conditions, 

highlighting the absence of integrated regulation of traffic signals and lane configurations, whereas 

prior studies concentrated on a fully CAV environment. The study also looks at the idea of lane-

based signal control and entrance lane settings, noting that dynamically modifying signal timings 

could not work well if traffic demands aren't considered. The entry-lane control problem includes a 

discussion of the dynamic lane assignment problem. The study suggests a cooperative control 

system called Total-Factor Control (TFC), to combine vehicle trajectories, lane configurations, and 

signal timings into a single system. The researched topic, the collaborative control framework, and 

an overview of the sections that create the collaborative control framework, explain the dynamic 

control process, carry out numerical experiments, and discuss the findings are presented at the end 

of the study.  

The article (Du et al., 2021) addresses the critical role signalized junctions play in addressing urban 

car fuel economy and transportation efficiency challenges. With the introduction of connected and 

automated cars, traffic has become more varied, with different cars possessing different degrees of 

intelligence. The study suggests a Coupled Vehicle-Signal Control (CVSC) technique as a reaction 

to these modifications. To increase traffic efficiency and save energy, this technique simultaneously 

optimizes CAV driving trajectories and traffic signal timing. Traditionally, traffic signal control and 

vehicle trajectory optimization have been approached as separate issues in the optimization of 

signalized junctions. Nevertheless, to achieve cooperative signal-vehicle control, the suggested 

CVSC approach incorporates these elements. While CAV routes are optimized to minimize fuel 

consumption at the micro level, traffic signals are tuned to decrease vehicle delay at the macro level.  

The study considers mixed traffic environments, in which CAVs and Human-driven vehicles (HDVs) 

coexist. This mixed traffic is analyzed using the suggested CVSC approach, which considers 

variables like velocity and saturation volume depending on the local CAV penetration rate. The 

approach demonstrates notable performance gains when compared to the conventional CACC 

control and the classic eco-driving model (GlidePath). Using car-following models like the Intelligent 

Driver Model (IDM), Cooperative Adaptive Cruise Control (CACC), and Adaptive Cruise Control 

(ACC), the basic graphical model of mixed traffic flow is constructed. The CVSC technique, which 

maximizes CAV trajectories and signal timeliness, is based on this concept. The efficacy of the 

CVSC approach is confirmed by simulation trials, which show 6%–14% fuel savings and 1%–5% 

average speed increases when the CAV penetration rate surpasses 40%. By addressing the 

cooperative functioning of cars and signal controllers in a mixed traffic situation and taking real-time 

information for optimization, the study contributes to the field. In light of the random mixing of Human 

driven vehicle (HDVs) and CAVs, the suggested CVSC approach, in summary, offers the potential 

for improving the operation of signalized junctions in mixed traffic conditions. The approach could be 

expanded in the future to handle multi-intersection signal coordination and consider various driving 

philosophies of human drivers. This research (Ghoul & Sayed, 2021) investigates the possibility of 

using data from Connected Vehicles (CVs) to optimize traffic networks' safety in real-time. The study 
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focuses on intersections and presents a Signal-Vehicle Coupled Control (SVCC) system that 

enhances safety by combining dynamic speed advisories and adaptive traffic signal control (ATSC). 

Using a Soft-Actor Critic Reinforcement Learning (SAC RL) framework in conjunction with a rule-

based methodology, the SVCC system distributes speed advisories to vehicle platoons upon 

approach and modifies signal timing accordingly. To assess the current conflict rate at the 

intersection and provide input for the model and performance evaluation, real-time traffic parameters 

are collected. Using VISSIM simulation, the suggested system is evaluated at two intersections, 

showing a significant reduction in traffic conflicts of 41–55% and a decrease in vehicle delays of 21–

24%. With diminishing returns beyond 50%, the study emphasizes the system's usefulness at lower 

market penetration rates. It is argued that this Signal-Vehicle Coupled Control architecture offers a 

computationally effective way to optimize safety in real-time at signalized junctions. The introduction 

highlights the frequency of rear-end incidents at junctions with traffic signals and highlights the 

contribution of CVs to increased safety. To provide the groundwork for the proposed Signal-Vehicle 

Coupled Control system, the study examines current intelligent transportation systems, including 

Green Light Optimal Speed Advisory (GLOSA), Adaptive Traffic Signal Controllers (ATSCs), and 

Vehicle-to-Infrastructure (V2I) communication. The methodology section describes how the hybrid 

dynamic programming-reinforcement learning strategy was used to construct the SVCC framework. 

To estimate conflict rates, safety performance functions based on shockwave characteristics are 

used. Considering both temporal and spatial characteristics, the environment state representation 

leverages aggregated data to overcome the difficulty of representing individual cars inside the 

Dedicated Short-Range Communication (DSRC) range. PTV VISSIM simulation software is used in 

the validation and testing segment to model junctions based on actual data. Vehicle behaviour is 

represented by the Wiedemann 99 car following model, and detector loop systems and signal timing 

schemes are utilized to calibrate test junctions. The data from connected vehicles is used to inform 

the Reinforcement Learning algorithm's decisions on speed advisories and signal time extensions. 

Connected vehicles are modelled independently. The new approach of the SVCC system in 

optimizing safety through real-time modifications to vehicle trajectories and signal timing is 

highlighted in the conclusion. The study highlights the need to consider all possible approaches at 

the intersection and reports notable improvements in safety and delays. Notwithstanding its efficacy, 

the report notes many drawbacks, including the requirement for case-specific research, the possible 

influence of inaccurate data, and difficulties in guaranteeing adherence to speed advisories. 

Suggestions for further study include field testing to evaluate theoretical benefits in real-world 

circumstances, including more data from connected vehicles, and investigating additional safety 

measures. The importance of more research and field testing is emphasized in the paper's 

conclusion to validate the suggested Connected Vehicle-based Signal-Vehicle Coupled Control 

system. The authors of this study (Q. Guo & Ban, 2023) present a comprehensive and novel multi-

scale modelling and control system designed to tackle the complex problems of urban traffic control, 

especially in relation to connected and automated vehicles . To improve the overall quality and 

efficiency of transportation systems, a comprehensive strategy is required due to the complexity of 

urban traffic control, which is characterized by several temporal and spatial scales. The writers 

concentrate especially on the two-scale SVCC issue in a setting where CAV penetration is complete. 

By utilizing a Model Predictive Control (MPC) scheme, the suggested framework introduces a 

stability analysis technique based on the idea of key state consistency between the two scales. The 

goal of this strategy is to offer a strong answer for the SVCC issue when CAVs are present. The 

authors provide numerical findings and thorough comparisons with benchmark approaches to 

demonstrate the framework's efficacy and highlight its potential benefits. The multi-scale modelling 

framework's introduction, its application to the SVCC problem in the presence of CAVs, and the 

paper's incisive comments on possible extensions to handle mixed traffic flow and tri/multi-scale 

urban traffic control scenarios are among its main contributions. The authors emphasize the 

significance of stability analysis, especially in situations involving Human-Driven Vehicles (HDVs), 
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and they push for the investigation of coordinating techniques for corridor management in their 

discussion of future research topics. The research also highlights the need to design stability analysis 

techniques specific to tri/multi-scale control settings. The authors emphasize the importance of 

continued study to guarantee the stability and suitability of the suggested multi-scale framework for 

Urban Traffic Control (UTC) in the context of unmanned aerial vehicles (UAVs). Therefore, this study 

makes a fundamental contribution to the rapidly developing subject of intelligent transportation 

systems by presenting a methodical and progressive strategy for addressing the difficulties 

associated with managing urban traffic in the era of automated and networked cars.  

Exploring the nexus of CAVs and traffic signal optimization, various studies delve into innovative 

models and controllers. Researchers propose a coupled control model that leverages real-time data 

for CAVs, optimizing traffic signal timing to improve efficiency in isolated signalized crossings. 

However, there is a general call for extending these models to encompass more complex urban 

traffic scenarios. In a distinct approach, an Extended Minimal Resource Allocating Network -aided 

controller showcases superior performance in lateral and longitudinal control for autonomous 

vehicles. The broader applicability and potential limitations of such controllers remain key focal points 

for future research. Additionally, the integration of mechatronics-electro-hydraulic power coupling in 

electric vehicles demonstrates promising outcomes in torque stability and energy efficiency through 

fuzzy logic optimization. While simulation results are encouraging, practical field testing and 

comprehensive evaluations are deemed essential for the broader implementation of these 

technologies. Collectively, these studies underscore the continuous advancements in CAV- and 

electric vehicle technologies, emphasizing the ongoing need for research to address specific gaps 

and challenges in real-world applications. The studies collectively underscore challenges in current 

traffic control systems, emphasizing the need for advancements in urban traffic management. 

Existing Traffic Signal Control Systems (TSCS) often lack early prediction and estimation 

capabilities, primarily offering real-time solutions for identified traffic issues. Emergency vehicle 

dispatch and arrival pose additional challenges, often overlooked in current systems. To address 

these gaps, research introduces innovative models like PANNAL, a predictive and reactive TSCS 

utilizing multi-agent systems and advanced algorithms. In parallel, optimizing traffic control systems 

at signalized crossings necessitates a holistic approach considering vehicle trajectories, lane 

allocations, and signal timings concurrently, especially in mixed-traffic environments. The 

coexistence of connected autonomous vehicles (CAVs) and human-driven vehicles (HVs) requires 

a comprehensive Signal-Vehicle Coupled Control (SVCC) strategy for improved traffic efficiency. 

Additionally, in addressing urban transportation challenges, the proposed Coupled Vehicle-Signal 

Control (CVSC) technique optimizes CAV driving trajectories and traffic signal timing simultaneously, 

exhibiting notable gains in fuel savings and average speed increases in mixed traffic conditions. 

These research endeavours collectively highlight the broader need for integrated, predictive, and 

adaptive traffic management solutions to address contemporary urbanization challenges 

comprehensively. 

2.2 Social routing  

The growth in urban population is likely to result in increasing pressure on the mobility system. 

Currently, road capacity and public transport supply are oftentimes insufficient to facilitate current 

demand, let alone a further increase. The high and expected increase in congestion levels affect not 

only accessibility and economic efficiency but is also the source of many negative externalities such 

as noise and GHG emissions, impacting the quality of life and social progress (Stiglitz et al., 2009). 

The need for interventions in transport comes from the fact that individuals are typically selfish, i.e., 

concerned with their own utility, when making decisions (Ben-Akiva & Lerman, 1985; Eikenbroek et 

al., 2023). Adopting a game-theoretic modelling perspective, it can be assumed that in the long run 

the travel demand distribution over the different subsystems and networks is close to an equilibrium 
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(Klein, Levy & Ben-Elia 2018), in which – according to the definition of Nash (1950) - travellers cannot 

improve utility by unilaterally changing mode, departure time or route. Theoretical examples (Braess, 

1968; Roughgarden, 2005) that consider route choice in road traffic networks illustrate that such 

selfish behaviour may lead to suboptimal performance compared to the system optimum. More 

recent studies in public transit (Luan & Corman, 2022) and real-world examples (ref Colak et al. 

(2016); Van Essen et al., 2020) confirm this observation. The system optimum, however, is 

considered to be a purely theoretical state, used as a reference to compare with other demand 

distributions, e.g., using the efficiency loss as expressed by the Price of Anarchy (Roughgarden, 

2005). The system optimum suffers from unfairness or equity issues in the sense that the realization 

of it may require a portion of the travellers to make sacrifices for the benefit of others (Jahn et al., 

2005; Klein et al., 2018; Van Essen et al., 2020), both in comparison with the baseline equilibrium 

as well as in comparison with other travellers. These within- and between-state differences 

complicate attaining or maintaining the system optimum over time (van Essen et al, 2020), and 

authority-traveller interaction is therefore often modelled as a win-loss game (Vreeswijk, 2015), and 

a fairness-efficiency trade-off (Eikenbroek et al., 2022, Morandi 2023).  

Empirical studies however indicate that travellers do not always make rational decisions – at least 

from an outside perspective (e.g., Ciscal-Terry et al, 2016; Djavadian et al., 2014; Zhu & Levinson, 

2015), e.g., due to the lack of information and or their cognitive capabilities in decision-making 

processes, also known as `bounded rationality’ (Mahmassani & Chang, 1987; Simon, 1997). 

Research in traffic psychology shows that assessing the quality of travel alternatives could be difficult 

for some travellers, or they are not willing to switch to an alternative option if the benefit of switching 

is not significant (Vreeswijk et al., 2015). In our context, authorities can exploit this partly rational 

behaviour during decision-making in the sense that system performance can be improved by 

degrading the level of service for a group of users without them caring or knowing, or at least not 

inducing a change in travel behaviour. In the game-theoretical setting, this leads to a boundedly 

rational user equilibrium (Eikenbroek et al., 2018), with users making individually sub-optimal yet 

acceptable choices for themselves. Considering this concept of bounded rationality in the context of 

transport interventions means that some of the sacrifices as aforementioned become possible, i.e., 

the network can be steered towards a state closer to the system optimum while respecting individual 

tolerances. Evidently, a significant degradation in the level of service (LoS) will be noticed and induce 

a change – at least in the long run - indicating that authorities should adopt a dual-notion approach 

(utilitarianism and sufficientarianism), i.e., everyone should be provided with a minimum LoS when 

maximizing contributions to social welfare (Gonzalez et al., 2022).   

The threshold of an attribute change below which individuals do not re-consider their travel choices 

is referred to as the indifference band (Mahmassani and Chang, 1987, Vreeswijk, 2015). This 

attribute change can either occur in reference to an alternative, e.g., road users will not re-consider 

their route since their gain by a unilateral change is less than this threshold (Di et al. 2017), or in 

reference to a habitual choice, e.g., the degradation (or improvement) in LoS when making the usual 

travel choices (Vreeswijk et al., 2013). Theoretically this suggests that if through intervention the LoS 

changes compared to a baseline situation while the indifference bands are respected, no potential 

behavioural responses are invoked. Scholars have particularly adopted this notion in route choice 

studies, assuming that a sub-optimal route advice is perceived to be acceptable as long as it is only 

slightly worse than the best one (Eikenbroek et al., 2022; Di et al. 2016) and the habitual choice 

(Jahn et al. 2022). It has been indicated (Eikenbroek et al. 2018; Morandi 2023) that the indifference 

band could be calibrated based on real-world data, and several previous scholars have studied this 

concept (e.g., Vreeswijk et al. 2015; Di et al. 2017). These studies, however, focus on a single 

attribute (e.g., travel time), or a single user group (e.g., car drivers), although practice is much more 

complex with various attributes playing a role when making travel decisions and many user groups 

interacting, particularly in an urban setting. 
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2.2.1 Literature review 

In the remainder of this chapter, we provide an overview of literature discussing the estimation and 

or use of indifference bands in the context of traffic and transport management. For the most relevant 

literature to be selected, different search engines, including Scopus, Google Scholar, and Research 

Rabbit are used. Different combinations of the keywords (e.g., travel time, waiting time, delay, and 

indifference bands) are used in the aforementioned search engines. In Scopus advance query, for 

instance, we combined multiple keywords such as travel time, delay, waiting time, and indifference 

bands. Since the concept of indifference bands is used in many fields, the subject area is limited to 

‘engineering’, ‘social science’, ‘computer science’, and ‘mathematics’, where 18 results were found. 

The following search query was used to find relevant studies.   

((TITLE-ABS-KEY( travel AND time )OR TITLE-ABS-KEY( waiting AND time )OR TITLE-ABS-KEY( 

delay* ))AND TITLE-ABS-KEY( indifference AND band* )) AND ( LIMIT-TO( SUBJAREA ,"ENGI" 

)OR LIMIT-TO( SUBJAREA , "SOCI" )OR LIMIT-TO( SUBJAREA , "COMP" )OR LIMIT-TO( 

SUBJAREA , "MATH" )) 

The systematic study selection process consists of three rounds. In the first round, any relevant 

literature found by the search engines is included. After screening the abstracts, non-relevant studies 

are excluded. In the second round, we used snowballing to find similar studies that were not found 

by the search engine through the above query. The final list of studies is presented in Table 1 for 

our literature review.       

Mahmassani and colleagues started incorporating the concept of bounded rationality from Herbert 

Simon into travel behaviour in the late 1990s, known as ‘indifference bands (IBs)’. The concept of 

IBs implies that travellers often do not change their behaviour if changes in their travel attributes are 

below certain thresholds, or in other words, perceptually the utilities do not change. Since the relative 

importance of different travel attributes varies among individuals, the minimum acceptable 

thresholds vary accordingly (Vreeswijk et al., 2013). Generally, when the attribute changes exceed 

certain thresholds, travellers are prone to adjust their travel behaviour. For instance, (Carrion & 

Levinson, 2019) studied the day-to-day choice of 65 commuters for 30 days and found that 

commuters switch to alternative routes if the travel time of their main routes increases beyond a 

threshold. 

Table 1 Overview of literature selected 

Category  Approach  Parameters  Attributes  Study 

Simulation  Methodological  Travel time, real-time 

information, signal 

control   

Route choice, 

departure time, en-

route choice  

(Hu & Mahmassani, 

1997)  

Interactive travel 

simulator  

Methodological  Real-time traffic 

information, schedule 

delay   

Route choice, 

departure time  

(Liu & Mahmassani, 

1998)  

Interactive travel 

simulator  

Behavioural 

modelling  

Real-time information 

reliability, users’ 

characteristics  

Departure time, route 

switch  

(Mahmassani & Liu, 

1999)  

Stated preference 

survey  

Behavioural 

modelling  

Real-time travel 

information, travel 

time, travel cost  

Freeway route 

switching  

(Jou et al., 2005)  
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Category  Approach  Parameters  Attributes  Study 

Video survey  Behavioural 

modelling  

Actual waiting time, 

red wave, number of 

stops, intersection 

characteristics  

Perceived waiting 

time  

(van der Bijl et al., 

2011)  

Theoretical 

framework  

Behavioural 

modelling  

Travel time, changes 

in the network  

Effective control 

space, route switch  

(Vreeswijk et al., 

2013)  

Survey  Behavioural 

modelling  

Travel cost  Route and departure 

time choice  

(Han et al., 2015)  

Simulation  Behavioural 

modelling  

Travel time, queue 

length, perception 

error  

Route switch  (Vreeswijk et al., 

2015)  

Literature review  Models and 

methodologies  

Substantive and 

procedural bounded 

rationality models   

Two-stage cognitive, 

day-to-day learning  

(Di & Liu, 2016)  

Simulation  Methodological  Travel time  Boundedly rational 

user equilibrium, 

route choice  

(Sun et al., 2016)  

Survey  Behavioural 

modelling  

Travel time, 

perceived safety  

Route switch  (Di et al., 2017)  

Simulation  Methodological  Travel time  Route choice  (Eikenbroek et al., 

2018)  

Simulation  Methodological  Fixed vs. flexible 

transit routes, vehicle 

size, service zone, 

total cost  

Modal shifts, smart 

transit  

(Guo et al., 2018)  

Simulation  Methodological  Value of travel time 

reliability and 

adaptive expectation 

formation  

Learning rate and 

indifference bands  

(Fu & Zhang, 2020)  

Simulation  Methodological  Incomplete and 

imperfect information  

Route and departure 

time choice  

(Yu et al., 2020)  

Survey  Behavioural 

modelling  

Absolute and relative 

travel time saving  

Route choice  (González Ramírez 

et al., 2021)  

 

However, the margin of such thresholds is fuzzy and therefore impossible to draw a concrete 

conclusion that route switches occur due to changes in a single attribute. This was revealed in the 

route choice experiments conducted by Hu and Mahmassani (1997), Liu and Mahmassani (1998) 

and Mahmassani and Liu (1999). That is, travellers do not switch to shorter paths due to the 

existence of inner inertia even though information about the path costs was available to them. Such 

inertia may stem from past experiences or habitual choices. Certain learning principles play a role in 

the adaptation of travel choices, and therefore commuters usually do not update their perceptions if 

they are unaware of the changes (Vreeswijk et al., 2013) or the changes are within their IBs (Di & 

Liu, 2016). Vreeswijk et al. (2013) divided drivers’ route choice behaviours into three categories 

which could also be applied in route switching: (1) logical behaviour where drivers switch to better 
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alternatives, (2) cognitive behaviour where drivers do not actively look for better alternatives if they 

are satisfied with their current route to reduce mental workload and (3) irrational behaviour where 

drivers choose the worst alternative.     

Travel time and cost are commonly used attributes to evaluate travel behaviour, such as trip 

planning, transport modes, and routes (Vreeswijk, 2015). In bounded rationality user equilibrium 

(BRUE), the flow-dependent travel time is assumed to be the only factor determining route choice 

(Di & Liu, 2016). Vreeswijk et al. (2015) studied various IBs to improve network performance on 

freeways. The authors found 600 seconds to be the maximum IB between travel times in the main 

route and the alternative one, below which the main route is still the preferred choice.  Furthermore, 

studies show that long waiting time at signalized intersections is another decisive factor in route 

choice. Even though the total travel time could remain below the threshold as presented in Vreeswijk 

et al. (2015), if perceived or actual waiting time exceeds a threshold, anxiety and stress start to build 

up, which could potentially result in route switches. According to Van der Bijl et al. (2011), the upper 

and lower IBs for perceived waiting time are 42 and 90 seconds, respectively. The waiting time below 

42 seconds is generally accepted and above 90 seconds could result in red-light crossing or route 

switch. This is of high importance to know when travellers are more susceptible to travel information 

and route-switch and, hence, advise social routing or set conditions for signal priority for heavy-duty 

vehicles. However, studies show that many other factors play roles in forming and adapting route 

choice, as well as route switches. Studies show that drivers do not only explore routes with less 

travel time but also routes that require cognitive processes (Di & Liu, 2016). Moreover, it is worth 

mentioning that travel decisions are also context-dependent and alternatives are chosen in terms of 

gain and loss relative to some reference points (Vreeswijk et al., 2015). This refers to prospect theory 

in which losses weigh twice the gains of equivalent size. Based on this theory, drivers are more likely 

to notice changes in their travel attributes that involve losses than gains. Furthermore, some 

secondary factors such as the number of stops, average travel speed, landscape, and presence of 

trees also influence drivers’ route selection (Flannery et al., 2005).   

Furthermore, travel choices are also subject to uncertainties in transportation systems, which makes 

people even more boundedly rational (Sun et al., 2016). Travellers do not exactly know the variability 

in their travel times or are unaware of the alternative routes. For instance, a study in Minnesota, 

United States, found that nearly 33% of the chosen routes by normal travellers were slightly longer 

than the shortest routes, which decreased to 11.3% for commuters (Zhu & Levinson, 2015). 

Therefore, real-time information becomes of high importance in reducing uncertainties in their route 

choice, as well as route switch. Jou et al. (2005) explored various types of real-time information, 

namely qualitative, quantitative, qualitative with guidance and quantitative with guidance, to model 

route-switching behaviour on freeways in Taiwan. The authors concluded that travellers on freeways 

are inclined to switch routes when quantitative (travel time and cost) and guidance information are 

provided on Variable Message Signs (VMS). However, even though the study demonstrates that 

travellers tend to switch routes when providing them with traffic information, the study does not 

provide any results when travellers decide to switch their routes apart from the fact that young and 

high-income travellers are more likely to change to the best routes. In addition, the study does not 

explain the (relative) magnitude of travel time and cost savings that trigger route-switch.   

Overall, boundedly rational travel choices of individuals should be considered and anticipated when 

designing and evaluating measures to improve network performance. Consequently, informed 

decision-making asks for incorporating the concept of IBs in traffic models, due to the collective 

responses of travellers to any traffic management measure, influencing its performance in practice. 

In this regard, IBs provide better insights into when and where changes in travel attributes trigger 

travel behaviour changes, primarily route switches. Based on this premise, optimal traffic 

management policies (e.g., signal priority and social routing) can be adapted to obtain the best 

possible outcome. However, defining the margins of IBs is a challenging task. Generally, we can 
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argue a larger size of IBs means that travellers are reluctant to switch choices and vice versa (Yu et 

al., 2020).  

Within the CONDUCTOR project, we consider two possible applications to improve network 

performance without major supply adaptations by exploiting the indifference band of travellers. 

Section 3.2 presents a framework to improve local traffic conditions for specific user groups (trucks) 

through prioritization while the LoS of other users are such that the change in travel utilities is within 

the indifference band, and, hence, no substantial travel behaviour changes are provoked or safety 

hazard is induced (e.g., red-light crossing). This setting is also considered in real life in the context 

of Use Case 1 - Almelo. In addition, Section 3.2 presents a methodological framework for social 

rerouting, a travel demand management measure where a portion of travellers is rerouted onto sub-

optimal yet acceptable paths in the interest of network-wide travel conditions. 

2.3 Prediction models for Demand Responsive Transport 

Within the Slovenia use case, we will address the challenge of poor public transport connections 

between Slovenian cities and airport(s) in neighbouring countries. Cross-border transport is growing 

because there is a limited offering of flights from Slovenian airports (or they are too costly). As a 

result, passengers often prefer airports in neighbouring countries for their departing destination. 

There is an increasing need for a flexible public transport system for intercity/interregional trips, 

which may enable people to commute short distances in affordable, reliable and sustainable ways. 

To allow efficient cross-border traffic integration, the traffic operators must have the observability of 

traffic demand (and predictions) and the capability to operate and react to traffic events (such as 

changes in service demand) in real-time. The dynamics of traffic services mediate the services’ 

availability and quality, reflected in final cost-effectiveness. 

Prediction modelling enables us to anticipate demand and fluctuations. An accurate prediction 

enables us a better use and management of the transport fleet of the demand-responsive transport 

service. In the development of a demand-responsive platform, we intend to use the benefits of 

demand predictions to improve operational efficiency and reduce usage wastage and idle time of the 

fleet. 

2.3.1 Background on prediction modelling 

In traffic forecasting (F. Guo et al., 2018) often the complex temporal and spatial dependencies must 

be considered. Temporal dependencies relate to periodic trends, such as rush hours or seasonal 

changes, while spatial dependencies describe how changes in traffic on one road may affect 

adjacent roads due to the topological structure of the road network. Successful prediction based on 

traffic patterns requires the inclusion of both types of dependencies along with various covariates. It 

has also been shown that multi-target models that capture dependencies between different targets 

and transfer information between them can also improve generalization (Huang et al., 2014; Jin & 

Sun, 2008). 

Given the ever-increasing amount of data, traditional statistical approaches are sometimes 

insufficient to effectively model complex time-dependent interactions (Makridakis et al., 2018; 

Spiliotis et al., 2020). As a result, recent methodologies are increasingly turning towards more 

complex machine learning (ML) models. However, drawing a clear line of differentiation between 

statistical models and ML-based models is often vague and poorly defined (Barker, 2020). 

The first approaches used classical machine learning methods where temporal dependencies were 

added by including lag features and treating problems as tabular problems (Kumar & Thenmozhi, 

2006; Luk et al., 2000; Mei et al., 2014). Further improvements in accuracy have been achieved by 
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incorporating more complex neural network-based models, such as RNN (Medsker & Jain, 2001), 

where connections between neurons can be organized in a cycle. Such models are better suited for 

handling temporal dependencies and have been successfully used for modelling traffic (Yun et al., 

1996). Later improvements in modelling temporal data, such as the introduction of Long Short-Term 

Memory (LSTM) cells (Gers et al., 2002), were also quickly adopted for the field of traffic forecasting 

(Zhao et al., 2017). Almost in parallel with the advances in temporal modelling with LSTMs, 

convolutional neural networks (CNNs) (O’Shea & Nash, 2015) also became increasingly popular. 

Although originally developed for image classification, they were adapted for time series modelling 

(Bai et al., 2018) and successfully used for traffic forecasting (G. Li et al., 2021; J. Zhang et al., 2017; 

Zhao et al., 2017). More recently, there has been a focus on developing architectures that are more 

specialized for time series modelling. One of the popular approaches for univariate time series point 

forecasting is the N- BEATS (Oreshkin et al., 2019) architecture, which is well suited for forecasting 

problems where large amounts of data are available. Similarly, DeepAR (Salinas et al., 2020) is a 

popular forecasting neural network that uses LSTM cells to predict parameters of a probabilistic 

distribution and provides more information about the uncertainty of the model. It can handle 

multivariate time series with future and past covariates. Lately, transformer-based (Lim & Zohren, 

2021) neural networks such as Temporal Fusion Transformers for Interpretable Multi-horizon Time 

Series Forecasting (Lim et al., 2019), have also been used for predicting freeway traffic speed (H. 

Zhang et al., 2022). Although deep learning techniques are widely used for forecasting, one should 

not ignore other approaches that have also been successfully used for accurate traffic forecasting, 

e.g, XGBoost (Dong et al., 2018). 

Even though advanced computing methods are becoming a standard tool for smart mobility solutions 

there are still several open questions that need to be addressed to bring these methods into 

widespread use. One important aspect of all real-world systems is the presence of rare events which 

are difficult to model with data-driven techniques. Current methodology handles these by 

incorporating expert knowledge into the prediction (Qi & Majda, 2020), however, if the general 

dynamics of the system is not known, which is the case for socially driven systems, more elaborate 

methods are required (Ashraf et al., 2023). In spatio-temporal modelling especially, we have fields 

of study related to probabilistic modelling (Wen et al., 2023), explainability and robustness (Pham et 

al., 2023), and representation learning (Xie et al., 2023) that are less mature compared to other 

machine learning varieties such as image analysis or natural language processing. This is in most 

part due to the special properties that time series data possesses, most notably arbitrary long-term 

dependencies in the input sequences and causality. However, the literature on this topic is rapidly 

expanding with an increasing number of use-case-specific techniques which circumvent these 

problems which pave the road toward robust solutions in data-driven prediction modelling. 

2.4 Optimisation techniques for urban logistics 

The integration of urban distribution of goods in the supply infrastructure for DRT service will be the 

foundation of the urban logistic Use Case (UC3), which will research and provide solutions for last-

mile delivery.  

Information on the need for goods delivery will be used to determine whether oversized PT routes 

can safely and effectively meet the demand for products, as well as to build goods delivery services 

based on DRT underused periods. The effects of reduced traffic on the overall transportation system 

(such as average travel times, total vehicle miles travelled, total vehicle travel time, total vehicle 

emissions, etc.) due to the transfer of goods delivery trips to underutilized DRT and public 

transportation will be evaluated considering different demand-supply balancing strategies aiming at 

optimisation of the performance of the overall transport network. 
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This section establishes a state-of-the-art analysis in the context of CONDUCTOR dynamic planning 

and optimization necessities, including last-mile vehicle routing, assessing suitable technologies, 

methodologies and approaches to highlight improvements for network management and urban 

planning. It does so by providing exact mathematical models complemented with a class of 

approximation algorithms establishing the trade-off between time and prevision.  

From a mathematical perspective, different models for vehicle routing problems (VRP) and 

optimization are assessed along with their problem domain. These include the Rich VRP, Stochastic 

VRP, Dynamic VRP and Multi-Objective VRP along with their individual advantages and examples. 

In parallel, a multitude of optimisation method proposals (Elshaer & Awad, 2020) have also emerged, 

ranging from exact to approximate and hybrid methods. Having said that, the objective of this section 

is to review the state-of-the-art in terms of the VRP optimisation models and optimization methods 

most aligned with CONDUCTOR’s objectives, as well as to assess their main strengths and 

weaknesses.  

With this objective in mind, the rest of this section is structured as follows. Section 2.4.1 reviews the 

state-of-the-art VRP variants that are most aligned with CONDUCTOR’s objectives and in particular 

with Task 3.4. Section 2.4.2 shows the state-of-the-art regarding the most commonly used 

optimisation methods to solve these VRP variants. 

2.4.1 Mathematical Models for Vehicle Routing 

Among routing problems, the Travelling Salesman Problem (TSP) (Gass & Fu, 2013) stands out as 

one of the challenges, alongside the VRP and the Problem of Allocation of Routes to Vehicles 

(Golden et al., 2008). The TSP has been extensively studied and is considered a fundamental 

problem in computer science. In the TSP, a group of customers and a vehicle are involved, with the 

primary objective being to determine an optimal route that begins and ends at the same point, visiting 

each node exactly once to minimise the overall trip cost (Mor & Speranza, 2020). 

Within the context of the VRP, the primary aim is to identify the most efficient set of routes with the 

minimum possible cost. This involves ensuring that each route starts and ends at the designated 

depot, every client is visited only once, and the cumulative demand of clients visited on a route does 

not exceed the vehicle's capacity. These problems fall within the realm of combinatorial optimization 

and are categorised as NP-hard, indicating that obtaining an optimal solution becomes 

computationally challenging as the graph size increases (Adewumi & Adeleke, 2018). 

The VRP is conventionally represented on a graph, where V denotes the set of vertices, A is the arc 

set, and C is a cost matrix defined over V, signifying distances, travel times, or travel costs. The 

objective of the VRP is to determine a set of routes for identical vehicles stationed at the depot, 

ensuring that each vertex is visited exactly once while minimising the overall routing cost. In the 

classical VRP version, components include a group of customers, a fleet of vehicles with limited 

capacities, and a central warehouse (Braekers et al., 2016). 

Real-world scenarios often introduce uncertainty into the VRP. This uncertainty may take various 

forms, such as varying demand, unpredictable travel times, and unexpected events like vehicle 

breakdowns. The Stochastic Vehicle Routing Problem (SVRP) is a VRP variant where one or more 

parameters are stochastic, represented by random variables with known probability distributions 

(Berhan et al., 2014). Beyond uncertainty, dynamic elements characterise real-world applications. In 

the Dynamic VRP (DVRP), also known as real-time or online VRP, certain input data is disclosed or 

modified during the distribution planning dispatching phase. Primary dynamic events in VRPs involve 

the real-time arrival of new customer pick-up/delivery requests or variations in service and travel 

times (Pillac et al., 2013). 
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Dynamic vehicle routing problems (DVRP) introduce additional complexities, with decisions affected 

by new elements and increased degrees of freedom. Real-time arrival of customer requests during 

operations is a common source of dynamism in vehicle routing. Additionally, travel time serves as a 

dynamic component in most real-world applications (Psaraftis et al., 2016). This category of 

problems has gained popularity for modelling just-in-time supply systems, leveraging technological 

advancements such as mobile devices or sensors, enabling dynamic adjustments to plans during 

route execution (Okulewicz & Mańdziuk, 2019). 

 

Figure 1 Example of Dynamic Vehicle Routing 

In the classic DVRP, vehicles with fixed equal capacity, depart from a depot to deliver products to a 

number of customers at demand points. Each customer has a known demand, where n is the number 

of customers. It is assumed that the quantities demanded are less than the maximum capacity of the 

vehicles. Meanwhile, new customers with known demand emerge dynamically over time. A graphical 

example of the classic VRP is shown in Figure 1. 

When addressing the VRP in practical scenarios, especially in last-mile environments, optimising 

solely for the distance travelled or working time proves insufficient. Diverse objectives or 

performance metrics, including cost or emissions, necessitate careful optimization. Moreover, these 

objectives frequently clash with one another, introducing intricacies into their collective optimization. 

Multi-objective VRP (Jozefowiez et al., 2008) models offer a deviation from the traditional VRP by 

concurrently optimising two or more objectives or performance metrics. 

2.4.2 Optimization Techniques for Vehicle Routing 

VRPs variants can be classified into three levels according to the degree of realism of their 

associated models. Aligned with this realism in the modelling, the class of optimization techniques 

used to solve them usually vary (Adewumi & Adeleke, 2018; Caceres-Cruz et al., 2015), as shown 

in Figure 2. Using this classification as a reference, we will review in the next part of this section the 

main categories of optimization algorithms used to solve the VRPs.  
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Figure 2 Model’s classification and optimisation techniques 

Since the classical VRP problem is NP-hard in the strong sense, all sub-variants are also NP. This 

means that there is no deterministic algorithm that guarantees the finding of the optimal solution 

within a computation time that is bounded by a polynomial in the input size. This means that only 

small-size instances can be handled by exact methods(Baldacci et al., 2012). 

Metaheuristics are widely recognized as efficient approaches for many hard optimization 

problems(Potvin & Gendreau, 2019). They represent a core research field in combinatorial 

optimization, the VRP is an NP-hard problem and furthermore, its real-life VRP applications are 

considerably larger in scale. Therefore, metaheuristics are often the more suitable solution approach 

for practical applications. One of the main metaheuristics in the referenced literature used to solve 

the VRPs is the Large Neighbourhood Search (LNS), a meta-heuristic in which the neighbourhood 

of a solution is defined implicitly by destroying and repair operators. A destroying operator ruins a 

part of the current solution while a repair operator rebuilds the destroyed solution. Typically, the 

destroy method contains some randomness such that different parts of the current solution are 

modified so that enabling exploration of the solution search space. This exploration technique 

enables larger neighbourhoods to be visited in comparison to standard neighbourhoods of classical 

local search methods. This property has made this method the state-of-the-art in many variants of 

the vehicle routing problem(Ghilas et al., 2016; Grangier et al., 2016) and  is also the reason why it 

is the method most commonly implemented in many software libraries and packages related to this 

field (Abdirad et al., 2022). 

In recent years, for the resolution of VRP problems, hybrid algorithms have emerged as a powerful 

tool to solve them, especially for the most complex VRP variants. Hybridization has become a very 

promising strategy for designing better metaheuristics methods, because of their greater flexibility, 

less strict mathematical formulations, and higher robustness. In this way, they provide a very suitable 

tool to develop solvers for VRP, and as a matter of fact, they have become state-of-the-art in many 

variants of the rich VRP (Goel & Bansal, 2019). Following the well-known taxonomy of hybrid 

algorithms proposed in (Raidl, 2006), we will review significant literature in this area by considering 

three classes of hybrid algorithms: metaheuristics hybridized with metaheuristics, metaheuristics 

hybridized with problem-specific metaheuristics, and metaheuristics hybridized with other 

Operational Research (OR) or Artificial Intelligence (AI) techniques. 

2.4.3 Optimization for Demand Responsive Transport and Logistics 

The previous section presented the optimization methods used for general VRPs. This section deals 

with the state-of-the-art methods available for a combination of DRT and logistics.  
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The DRT, more specifically ride-hailing services, falls under the category of stochastic and dynamic 

VRP (SDVRP) — the customer requests are dynamically added to the system and assigned to 

vehicles. To reduce the empty vehicle kilometres travelled, the literature generally uses shared rides 

or ride-pooling (Engelhardt et al., 2019; Ruch et al., 2021). However, this also significantly increases the 

problem complexity due to a higher number of possible combinations between vehicle and customer 

locations. Most state-of-the-art methods, therefore, heavily utilize explicit time constraints on 

customer pickups and in-vehicle travel times to reduce the complexity and computation time (Alonso-

Mora et al., 2017; Ma et al., 2015; Santi et al., 2014). In contrast to DRT customers, the freight 

requests are often less time critical. This makes a pure customer-oriented DRT method 

computationally intractable when combined with freight requests. The following briefly discusses the 

methods found in the literature for a combined DRT system with passengers and same-day freight 

delivery. 

Even though ample literature is available on the problem of passengers and goods transport in 

dedicated networks, the question of combined service with shared transport resources is far less 

researched in the literature (Mourad et al., 2019). However, with the increasing focus on shared 

mobility systems, the research is gaining momentum. For example, (B. Li et al., 2014) studied a 

share-a-ride problem for passengers and parcels using taxis. Additionally, they proposed a less 

complex freight insertion problem (FIP) whereby the freight request is inserted into an already-built 

vehicle path for passengers such that the service quality of passengers is not significantly reduced. 

Given the complexity of the overall problem, the formulation did not allow the pooling of multiple 

passengers, and later, they also introduced an adaptive LNS approach to solving the problem (B. Li 

et al., 2016). (Beirigo et al., 2018) provided another formulation where they allowed the pooling of 

passengers and different-sized parcels in the same trip. (Arslan et al., 2019) studied a crowd-sourced 

delivery system using the excess capacity on trips already taking place. In this system, the self-

employed ad-hoc drivers deliver the parcels on their way home or to work. A backup fleet of vehicles 

is kept serving the unmatched parcels. Additionally, the method introduced assumes explicit time-

windows provided by both ad-hoc drivers and parcel requests. It should be noted that while the 

above studies combine DRT with logistics, the solution methods often are only tested on small 

problem instances and network. Nevertheless, they provide important groundwork for more practical 

methods applicable to bigger networks. The studies on large networks and large problem instances 

are still quite limited. For example, Manchella et al. developed a reinforcement learning based 

approach using the New York City taxi dataset and network (Manchella et al., 2021). The approach 

used multi-hop transit mode for a joint transportation of passengers and goods. The approach 

showed significant improvement over transit mode without multi-hop and over separate 

transportation of passengers and goods. Fehn et al. used agent-based simulation in the city of 

Munich using real freight data to study the impact of  combining DRT with freight requests (Fehn et 

al., 2021, 2023). They assume that the operator knows all the freight requests beforehand and only 

the passenger requests are dynamically added to the system. They study three heuristics for 

accommodating freight requests into the vehicle routes. As discussing all of the optimization methods 

available in the literature is beyond the scope of the current section, for a more detailed review of 

available methods, refer to the survey by Mourad et al. (Mourad et al., 2019) 

  



Network load balancing and dynamic optimization technologies  

PU (public) | 1.0 | Final   Page 25 | 59 

3 NETWORK LOAD BALANCING AND DYNAMIC 
OPTIMIZATION TECHNOLOGIES 

In a transport network, the route distribution of Connected and Autonomous Vehicles is a key 

component of the load-balancing optimization process. CAVs may dynamically adjust their routes in 

real-time based on traffic conditions by utilizing advanced sensing and communication technology. 

This allows them to effectively re-distribute themselves across different routes to reduce congestion 

and avoid bottlenecks. By avoiding possible bottlenecks, this dynamic routing optimization in 

conjunction with machine learning algorithms for predictive traffic management allows for a proactive 

approach to load balancing. Furthermore, cooperative communication between CAVs promotes 

cooperative traffic flow by enabling cars to plan their routes and arrange themselves to avoid traffic 

jams. Additionally, assisting in effective signal control, flow regulation, and congestion reduction at 

key intersections is the adaptive interaction with traffic signal systems. By maximizing travel routes 

and reducing idle time, the ecologically sensitive route allocation of CAVs not only increases overall 

network efficiency but also lowers emissions, and fuel consumption, and promotes a more 

sustainable urban mobility ecology. 

3.1 Traffic management: signal vehicle couple control 

This section is dedicated to the progress of the work performed related to traffic management using 

SVCC with CAVs for network load balancing. 

3.1.1 Proposed innovation 

We evaluated the following assumptions in order to answer this problem: There is a fleet of fully 

CAVs that are linked to Traffic Management Centers (TMCs) and can be operated by numerous 

TMCs (hierarchical control). We further assume that the origin and destination of each CAV are 

known to the corresponding TMC, and that there are one or more pre-defined pathways between 

each origin and destination. We investigated mixed traffic scenarios and fully autonomous scenarios 

in this problem. The goal is to optimize the path assignment for the whole CAV fleet (determine the 

percentage of CAVs that take each origin-destination (OD) pair and path) as well as the traffic control 

plan on specific arterials of the studied network. 

3.1.2 Specifications 

This section encompasses a set of specifications intended for the routing and management of 

connected and autonomous vehicle fleets. Fundamentally, the approach is based on a sophisticated 

sensitivity analysis that makes use of simulations to examine various scenarios and how they affect 

the network at different rates of CAV penetration. The simulation model is carefully designed to 

match current calibrated models, guaranteeing that the overall network demand faithfully reflects 

actual patterns. Utilizing historical data from transportation authorities, the system recognizes and 

imitates several event and incident categories, offering a practical basis for enhancing traffic 

management response strategies. Most importantly, this strategy complies with regulations set forth 

by the transport authorities, including safety criteria and possible limitations on traffic rerouting to 

other routes. The simulation model is an intricate entity in and of itself, covering a large study area 

and providing a thorough investigation of M30 traffic using both macroscopic and mesoscopic 

models. This entails incorporating traffic signal plans, precisely identifying CAVs in the simulation, 

considering connection assumptions, and providing thorough route assistance. Interestingly, the 

approach uses hierarchical traffic management stations to supervise the entire CAV scenario, but it 
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also includes decentralized control for CAVs. In addition, the approach comprises a thorough 

feasibility check and the establishment of key indicators to evaluate the impact of events, rerouting 

techniques, and CAVs. This all-encompassing approach guarantees a comprehensive assessment 

of the viability and effectiveness of the suggested system in maximizing traffic control and safety, 

both inside the city of Madrid and in larger urban environments. 

We have considered the following presumptions: Our fleet consists of completely autonomous and 

connected vehicles or CAVs, that may be controlled by the TMC through centralized control. We 

also consider the fact that the TMC is aware of the origin and destination of every CAV, and that 

there are one or more pre-established routes that connect each origin and destination. We have 

considered mixed traffic scenarios in this challenge. The goal is to optimize both the traffic control 

plan on a particular arterial of the considered network and the path assignment for the entire fleet of 

Unmanned Aerial Vehicles (UAVs) based on several performance metrics that we will specify below 

(for each OD-pair and path, define the percentage of CAVs that follow that path). 

3.1.3 Progress of the work performed 

To formulate the problem at hand, we consider Π to be the entire path set in the network and π𝑜𝑑 is 

the path set between an origin 𝑜 ( 𝑜 ∈ 𝑂  ) and a destination 𝑑 ( 𝑑 ∈ 𝐷 ), where 𝑂 and 𝐷 are the sets 

of origins and destinations, respectively. From the above assumption, we can say, π𝑜𝑑 ⊆  Π. 𝑉𝑜𝑑
𝐶𝑜𝑛𝑣 

and 𝑉𝑜𝑑
𝐶𝐴𝑉 are the total demands for conventional vehicles and CAVs for 𝑂𝐷 pair (𝑜, 𝑑) 𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷 . 

The problem can be formulated as follows: 

min
(ψ𝑖

𝐶𝐴𝑉,𝑥=(𝐶𝐿,𝐺𝑇,θ))
𝐹𝑠𝑣𝑐𝑐 = 𝑤1 ∗ 𝑓𝑒𝑚 + 𝑤2 ∗ 𝑓𝑐 + 𝑤3 ∗ 𝑓𝑇𝑇𝑑𝑖𝑓𝑓

+ 𝑤4 ∗ 𝑓𝑒𝑐        (1) 

Here, Equation (1) is the objective function of this optimization problem and 𝑤1, 𝑤2, 𝑤3, 𝑤4 are 
combination weights provided by the user and ideally 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 = 1. ψπ𝑖

𝐶𝐴𝑉 (0 < ψπ𝑖
𝐶𝐴𝑉 ≤

1) is the fraction of the total respective demand for CAVs for path 𝑖 . 

𝑠. 𝑡. 𝐶𝐿𝑚𝑖𝑛 ≤ 𝐶𝐿 ≤ 𝐶𝐿𝑚𝑎𝑥   (2) 

0 ≤ θ𝑧 < 𝐶𝐿, ∀𝑧 ∈ 𝑍  (3) 

𝐺𝑇𝑚𝑖𝑛 ≤ 𝐺𝑇𝑧,𝑖 ≤ 𝐺𝑇𝑚𝑎𝑥, ∀𝑧 ∈ 𝑍, ∀𝑖 ∈ 𝐼𝑧 (4) 

𝐺𝑇𝑧,1 + 𝐺𝑇𝑧,2 = 𝐺𝑇𝑧,5 + 𝐺𝑇𝑧,6, ∀𝑧 ∈ 𝑍𝑟𝑏  (5) 

𝐺𝑇𝑧,3 + 𝐺𝑇𝑧,4 = 𝐺𝑇𝑧,7 + 𝐺𝑇𝑧,8, ∀𝑧 ∈ 𝑍𝑟𝑏   (6) 

∑ 𝐺𝑇𝑧,𝑖

𝑖

= 2𝐶𝐿, ∀𝑧 ∈ 𝑍 .      (7) 

In the signal timing optimization problem, decision variables are cycle length 𝐶𝐿, green timings 𝐺𝑇 

and offsets θ. Here 𝑥 represent the tuple (𝐶𝐿, 𝐺𝑇, θ). The problem is constrained by the linear 

constraints associated with the 𝐶𝐿, 𝐺𝑇, and θ Equation (2-7). Arterial intersections have the National 

Electrical Manufacturers Association (NEMA) phase number on them and the time sequence of 

phases might be organized using the ring-and-barrier diagram, which separates conflicting traffic 

streams in major and minor street movements. Here, 𝑍 is the set of selected intersections in the 

network for which the traffic plan is optimized and 𝐼𝑧 is the NEMA phases for the intersection 𝑧 ∈ 𝑍. 

The value of offset for each intersection can vary from zero up to the selected cycle length, the first 

intersection in the considered path is established as the reference point thus it is associated with 

zero offset. The last three constraints make sure no conflicting phases are running together, these 

constraints enforce the ring-and-barrier diagram to the arterial intersection, for the subset of 

intersections that implement the type of traffic plan, that is defined by 𝑍𝑟𝑏 ⊂ 𝑍. Those three 
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constraints apply to those intersections where there are conflicting phases present (like arterial 

intersections).𝐺𝑇𝑚𝑖𝑛 and 𝐺𝑇𝑚𝑎𝑥 are the minimum and maximum duration of green time admissible. 

In Equation (8), 𝑓𝑒𝑚 denotes the total emission of the network where 𝑒𝑚𝑖,𝑥 and 𝑒𝑚𝑖,𝑥
∗  are the emission 

for CAVs and conventional vehicles for path 𝑖 with signal timing parameters set 𝑥, respectively. ψπ𝑜𝑑,𝑖
𝐶𝐴𝑉 

and ψπ𝑜𝑑,𝑖
𝐶𝑜𝑛𝑣 are the fractions of the total respective demand for CAVs and conventional vehicles for 

path 𝑖.  

𝑓𝑒𝑚 = ∑ ∑ ∑ ψπ𝑜𝑑,𝑖
𝐶𝐴𝑉

𝑖∈π𝑜𝑑𝑑∈𝐷𝑜∈𝑂

⋅ 𝑉𝑜𝑑
𝐶𝐴𝑉 ⋅ 𝑒𝑚𝑖(𝑥) + ∑ ∑ ∑ ψπ𝑜𝑑,𝑖

𝐶𝑜𝑛𝑣

𝑖∈π𝑜𝑑𝑑∈𝐷𝑜∈𝑂

⋅ 𝑉𝑜𝑑
𝐶𝑜𝑛𝑣 ⋅ 𝑒𝑚𝑖

∗(𝑥) .     (8) 

In Equation (9),  𝑓𝑐 denotes the congestion at a selected road segment 𝑠, where 𝑠 is a subset of the 

set 𝑆  which holds all the paths in the network and 𝑓𝑐 is defined by the time difference between free-

flow travel time and current travel time for selected 𝑠 with signal timing parameter set 𝑥. 

𝑓𝑐 = ∑ 𝐷𝑒𝑙𝑎𝑦(𝑠, 𝑥) 

𝑠∈𝑆

.     (9) 

In Equation (10), 𝑓𝑇𝑇𝑑𝑖𝑓𝑓
 denotes the total travel time difference between CAVs and conventional 

vehicles, where 𝑇𝑇𝑖,𝑥
𝐶𝐴𝑉,𝑜𝑑 denotes the travel time for CAVs for path 𝑖 in the (𝑜, 𝑑) pair considering the 

signal parameters 𝑥, 𝑇𝑇𝑖,𝑥
𝐶𝑜𝑛𝑣,𝑜𝑑 is the same as 𝑇𝑇𝑖,𝑥

𝐶𝐴𝑉,𝑜𝑑, but for conventional vehicles. 

𝑓𝑇𝑇𝑑𝑖𝑓𝑓
= |∑ ∑ ∑ 𝑇𝑇𝑖,𝑥

𝐶𝐴𝑉,𝑜𝑑

𝑖∈π𝑜𝑑𝑑∈𝐷𝑜∈𝑂

− ∑ ∑ ∑ 𝑇𝑇𝑖,𝑥
𝐶𝑜𝑛𝑣,𝑜𝑑

𝑖∈π𝑜𝑑𝑑∈𝐷𝑜∈𝑂

| .     (10) 

Finally, 𝑓𝑒𝑐 denotes energy consumption of CAVs and is formulated by Equation (11), 𝑒𝑖,𝑥 denotes 

energy consumption of a single CAV (we assume the CAV fleet is homogeneous) deployed in path 

𝑖 with signal parameter set 𝑥. 

𝑓𝑒𝑐 = ∑ ∑ ∑ ψπ𝑜𝑑,𝑖
𝐶𝐴𝑉

𝑖∈π𝑜𝑑𝑑∈𝐷𝑜∈𝑂

⋅ 𝑉𝑜𝑑
𝐶𝐴𝑉 ⋅ 𝑒𝑖,𝑥  .     (11) 

The proposed CAV route distribution optimization scheme operates in a multi-level control strategy 

where for a specific OD pair all the possible paths are known before the commencement of the 

journey and the central TMC distributes the total demand for that OD pair among those paths based 

on the predefined KPIs. Now this scheme also houses the idea of having distributed control via 

strategically placed roadside units (RSUs) which can monitor segments of paths between the OD 

pair and can communicate with the vehicle using the V2I principle. In case of any disruption on the 

path that RSU is monitoring it can dynamically re-route the vehicle to alternative path for the same 

OD pair by communicating with the vehicle. In the case of one RSU monitoring path segments for 

multiple OD pairs, it can correctly propose the most feasible alternate path segment for the 

corresponding OD pair. 
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Figure 3 Multi-level control scheme for CAV routing 

We can have an example of the above-discussed scheme by using Figure 3, where, let us assume 

we have a finite demand for the OD pair O1D and the possible paths for this trip are {{O1,1,2,D}, 

{O1,1,D}, {O1,1,3,4,D}, {O1,1,3,D}, {O1,5,D}, {O1,O2,5,D}, {O1,3,D}}. Lets assume that node {4} and 

node {1} are RSUs. Now at the beginning of the journey the total demand will be distributed among 

those paths based on the current status of the transport network and KPIs. In case of any disruption 

to any path for example say in path {O1,3,4, D} the road is blocked due to some reason then the 

RSU stationed at node {4} can communicate the alternate route {O1, 3, D} to the approaching 

vehicle. 

Using this distributed control scheme, we can achieve higher throughput from the transport network 

and the system will also get some degree of transport resilience.  

3.2 Social routing 

Travel demand management measures can be implemented as an alternative or alongside supply-

side measures to improve the distribution of demand over transport networks (see, e.g., Drabicki et 

al. 2023; Halvorsen et al. 2016; Ma & Koutsopoulos, 2019; Morandi, 2023). Interventions concerning 

the supply are typically taken for the longer term and can therefore only slowly react to sudden and 

unexpected changes in the environment. Moreover, measures such as building new or expanding 

current infrastructure can have counter-productive effects, including a deterioration in network 

performance as illustrated by the well-known example of Braess. In the context of public 

transportation, adaptations in the supply might not even be permitted by public transport authorities.  

Travel demand management measures, on the other hand, allow for personalized or group and 

situation-specific interventions on different levels. In this respect, we can roughly distinguish between 
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“hard” and “soft” demand management measures (Bamberg et al., 2011). We define hard travel 

demand management measures as policies and solutions that directly influence the cost or utility of 

a travel option, typically through monetary incentives or other types of rewards such as goods and 

points. Various pilot projects have been conducted to change human behaviour for the common 

good, not only in the transportation domain (Knockaert et al. 2012; Fioreze et al. 2020), but also to 

reduce energy consumption (Handgraaf et al. 2013), and to prevent an overload of submissions of 

farmers (Dirkmaat et al. 2023). Where hard measures may yield a positive impact initially, it “…may 

change what was initially a moral or social issue (i.e., acting for the greater good) into an economic 

trade-off with small monetary gains” (pp. 86-87, Handgraaf et al., 2013), and it may thus be difficult 

to have sustained effects when the rewards are no longer provided. The soft measures, on the other 

hand, make travellers reconsider their travel behaviour on a voluntary basis – and may therefore be 

more effective than hard incentives (Ariely, 2016; Handgraaf et al. 2013). Examples include social 

rewards and voluntary behaviour change initiatives (e.g., Taylor, 2007) to motivate people to choose 

more sustainable modes of transport through the provision of personalized information (Bamberg & 

Rees, 2017), to promote off-peak travel (Haloversen et al. 2020) or to take a social route (van Essen 

et al. 2020).  It can be concluded that soft measures aiming for the social behaviour of people by 

means of information, advice or social rewards offer opportunities in the context of travel demand 

management.   

3.2.1 Proposed innovation 

In this section, we propose a framework for the design of social travel advice strategies (or: social 

rerouting), where a portion of travellers is asked through personalized travel advice to make 

individually sub-optimal yet acceptable travel choices for the common good. This is a soft travel 

demand management measure that with the potential to improve demand distribution from a 

system’s perspective. In fact, the boundedly rational decision-making processes of individuals (see 

Section 2.2) suggest that travellers have a certain flexibility in their travel (see also Henn et al. 2011), 

and thus may comply with advice as long as the loss or sacrifice in utility is within certain bounds 

(the indifference band). In a traffic and transit assignment context, this means that the network can 

be steered away from the user equilibrium to a state which is closer to the system optimum. However, 

where the system optimum requires significant sacrifices that cannot be expected on a regular basis, 

or without substantial compensation, the resulting demand distribution can be achieved and 

maintained over time. Respecting the indifference band, however, is a delicate task since the 

realized travel conditions on the suggested path need to be anticipated yet are influenced by the 

choices of all travellers (crowding, queuing, congestion, etc.). Hence, conditions do not only depend 

on the choices of those who receive and comply with the travel advice, but also on other travellers 

re-evaluating their travel choices in the long run due to the changing choices of others (Eikenbroek 

et al. 2022). This complex feedback mechanism needs to be explicitly incorporated to ensure that 

compliance is maximized, and projected effects are achieved (Ben-Akiva et al. 1991). Therefore, we 

adopt a hierarchical, bi-level framework, basically a representation of a game between two players 

(Josefsson & Patriksson, 2007). The upper level represents the authority concerned with network 

performance, while the lower level (the travellers) is concerned with the individual utility according to 

a (user) equilibrium. The authority seeks for a strategy to improve the distribution of the demand at 

the upper level and uses a model (traffic or transit assignment) to predict the behavioural responses. 

These responses make the (‘behaviour’ of the) related optimization problem very difficult to analyze 

and numerically solve for larger network instances, see Angelelli et al. (2020, 2021) and Eikenbroek 

et al. (2018, 2022.) reactive settings that do not anticipate the travel conditions (Angelelli et al. 2016; 

Bagloee et al. 2017, Jahn et al. 2005, and Van Essen et al. 2020). 
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3.2.2 Specifications 

The proposed CCAM strategy aims for improved transport system performance through network 

load balancing and dynamic optimization. More specifically, we develop strategies for social 

rerouting and cooperative intelligent traffic signal control with freight signal priority. Social travel 

advice suggests socially beneficial travel choices to receptive travellers but needs to balance the 

interests of society, individuals and relevant actors to ensure that network performance is improved 

while user-induced constraints are met. Within CONDUCTOR, cooperative intelligent traffic signal 

control focuses on the real-time optimisation and coordination of a sequence of traffic signals in a 

peri-urban setting for the benefit of network efficiency and externalities, where a minimum acceptable 

level of service and safety needs to be ensured for all (road) users to assure that effects can sustain.  

The latter innovation will be tested using the Almelo road network (Use Case 1 Almelo pilot), while 

the first innovation will be detailed on a conceptual level in Section 3.2.3. General requirements for 

improved signal control relate to the guidelines for traffic signal control in the Netherlands, as 

described by CROW (Wilson  & De Groot, 2006), e.g., to ensure safety, a minimum level of service, 

and a minimum and maximum green, amber and red times for each direction. More specifically for 

the proposed innovation, technical requirements include:  

• an estimation of an indifference band relative to a reference (baseline) scenario; 

• the solution requires a prediction of the vehicles' arrival times at signalised intersections along 

an urban road under virtually all traffic conditions;  

•  the definition of relevant objective functions (e.g., waiting time, safety, and emissions) for 

involved actors (e.g., freight operators, municipality, bus operator) in a mixed-traffic 

environment balancing short and long-term impacts;  

• priority strategy able to accommodate multiple priority requests from different transport 

modes; 

•  prediction model incorporating feedback loops to anticipate the impact of changes in signal 

control on LOS for road users; 

•  forecasts of near-future signal timings, queue lengths and speeds and conversion to 

individual speed advice. 

The innovation benefits from various data sources, including inductive loop detectors, cameras, 

iTLCs, GTFS, GPS-based real-time locations of trucks and weather information. 

3.2.3 Progress of the work performed 

We further study the requirement to balance user and social interests, first in the context of a static 

traffic assignment with fixed demand. Given is a directed traffic network 𝐺 = (𝑉, 𝐸), with 𝑉 being the 

set of nodes, and 𝐸 being the set of directed edges (road, links, or arcs), 𝑒 = (𝑖, 𝑗), with 𝑖, 𝑗 ∈ 𝑉. 

There is a set of origin-destination pairs (OD pairs) w = (𝑡𝑤 , 𝑠𝑤)  ∈ V  × V. Each OD-pair 𝑤 ∈ 𝒲 has 

a corresponding demand 𝑑𝑤 > 0, and is connected by a set of simple directed paths or routes ℛ𝓀. 

The set of ℛ of all paths in the network is the union of the path sets per OD-pair, i.e., ℛ = ⋃ ℛ𝓌𝑤∈𝑊 . 

A distribution of the demand 𝑑 is a pair of flow vectors (𝑓, 𝑥) = (𝑓𝑟, 𝑟 ∈ ℛ; 𝑥𝑒 , 𝑒 ∈ 𝐸) so that Λ𝑓 =

 𝑑, Δ𝑓 −  𝑥 =  0, 𝑓 ≥ 0, where Λ ∈ ℝ|𝒲|×|ℛ| is the OD-path incidence matrix, with Λwr = 1 if route 𝑟 

is in ℛ𝓌, and  Λ𝑤𝑟 = 0 otherwise. Δ ∈ ℝ|E|×|ℛ| is the arc-path incidence matrix, defined by Δer = 1 if 

link 𝑒 is in route 𝑟, and Δ𝑒𝑟 = 0 otherwise.  

Each arc 𝑒 in the network has a corresponding (link) flow-dependent, separable non-negative, 

continuous, convex and strictly monotone disutility or travel cost function 𝑙𝑒: ℝ+ → ℝ+. The route cost 
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𝑐𝑟(𝑓), induced by traffic flow (𝑓, 𝑥), is the sum of travel costs of all edges constituting that path:  

𝑐𝑟(𝑓) = ∑ 𝑙𝑒(𝑥𝑒)𝑒∈𝑟 . 

When concerned with route choice, Wardrop (1952) formulated two criteria to determine the 

distribution of the demand over a traffic network. Wardrop’s first principle assumes travellers to be 

selfish and perfectly rational in making route choice decisions, and the resulting Wardrop equilibrium 

is such that all travellers for the same OD-pair face the same minimum route cost. In our context of 

boundedly rational route choice, a portion of the travellers (so-called social travellers) is willing to 

comply with social travel advice as long the route is not perceived to be substantially worse compared 

to the best-possible option (see also Eikenbroek et al. 2022). Therefore, we divide the demand into 

social and selfish trips. The social trips vector is denoted by 𝑑𝑠 ∈ ℝ+
|𝒲| and the selfish demand 

vector is denoted by 𝑑𝑛 ∈ ℝ+
|𝒲|, whereby 𝑑 = 𝑑𝑠 + 𝑑𝑛. The set of feasible flow distributions is 

denoted by ℱ, i.e., ℱ = {(𝑓𝑠, 𝑓𝑛, 𝑥)|Λ𝑓𝑠 = 𝑑𝑠, Δ(𝑓𝑠 + 𝑓𝑛) − 𝑥 = 0, 𝑓𝑠 ≥ 0, 𝑓𝑛 ≥ 0} . In our framework, 

we assume that social travellers are willing to take a detour as long as the route is at most ε ⋅ 100% 

worse, (ε ≥ 0), compared to the shortest path (in terms of route costs). Consequently, there is a 

whole space of ‘stable’ distributions. Formally, flow  (𝑓̅𝑠, 𝑓̅𝑛, 𝑥̅) ∈ ℱ with corresponding path cost 

vector 𝑐(𝑓̅), 𝑓̅ = 𝑓̅𝑠 + 𝑓̅𝑛, is said to be in mixed equilibrium if for all 𝑤 ∈ 𝒲, 𝑟 ∈ ℛ, the following 

conditions hold: 

𝑓𝑟̅
𝑛

> 0 ⇒ 𝑐𝑟(𝑓̅) ≤ 𝑐𝑞(𝑓̅),                 for all 𝑞 ∈ ℛ𝓌   (12a) 

𝑓𝑟̅
𝑠

> 0 ⇒ 𝑐𝑟(𝑓̅) ≤ 𝑐𝑞(𝑓̅)(1 + 𝜀),    for all 𝑞 ∈ ℛ𝓌  (12b) 

Intuitively, these two conditions indicate that there is no intrinsic motivation to change routes: selfish 

travellers travel on a minimum-cost path, while the social travellers travel on an ‘acceptable’ or 

‘reasonable’ path. Any feasible flow distribution that satisfies the above conditions can be considered 

‘attainable’ and ‘maintainable’, since all travellers are satisfied with their route. Note that, in contrast 

to e.g., Di et al. (2017), we adopt here a multiplicative rather than an additive indifference band.  

The social travel advice strategy determines the best possible routes to be proposed to the social 

travellers. The accompanying optimization problem is to minimize an objective function such as total 

travel time, denoted by 𝑧(𝑓), while the resulting flow distribution should be in mixed equilibrium, i.e., 

𝑃: 𝑚𝑖𝑛 
(𝑓𝑠,𝑓𝑛,𝑥)∈ℱ

𝑧(𝑓)      s.t.      (𝑓𝑠, 𝑓𝑛, 𝑥)      satisfies     (12𝑎), (12𝑏) . 

The 𝑓𝑠– part of the optimal solution of problem (P) is of interest, as it includes the paths to be 

suggested to the social travelers. Through condition (12b) the travel costs on suggested paths are 

within bounds compared to the best possible path. The optimization problem (𝑃) is difficult to solve 

directly and can be classified as a mathematical program with equilibrium constraints (Luo et al., 

2010), where standard constraint qualifications may fail to hold at any feasible point. This is mainly 

because the right-hand side conditions in (12a) and (12b) should solely hold under strictly positive 

path flows, see Kleinert et al. (2020) for further details.  

Social rerouting in public transit networks 

In networks without capacity constraints (uncapacitated), the steady-state distribution of the demand 

over a network is typically modelled along the condition as formulated by Wardrop (1952). 

Particularly in public transport networks, however, the limited available capacity is a major 

determinant of travel choices, i.e., vehicle capacities make that a Wardrop equilibrium might not exist 

(see Corman, 2020; Marcotte et al. 2004; Sheffi, 1985). In this section, we consider a schedule-

based transit assignment, with limited vehicle capacities influencing the disutility or generalized cost 

of travel options as follows. First, passengers fail to board once capacity is reached. Second, there 

is additional discomfort due to in-vehicle crowding. Consequently, the framework of the previous 
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section does not directly apply to the setting considered here since the travel cost functions basically 

become non-separable, i.e., the cost explicitly depends on upstream boardings. 

We adopt a schedule-based event-activity network to describe the supply of public transport services 

as a time-extended yet static graph. Here, each node in the graph corresponds to an event, i.e., a 

time-station/stop combination, for example, the departure or arrival of a train. Each directed edge 

connects a pair of events, resulting in edges representing activities of access (passengers entering 

the system from an origin), egress (passengers leaving the system at their destination), driving 

(movement of vehicles), dwelling (vehicles waiting at stations), and transfer (passengers transferring 

from one service to another). Further, each arc 𝑒 has an associated capacity, denoted by κ𝑒. For 

driving and dwell arcs, the arc capacity is limited and equal to the maximum vehicle capacity 

(standing and seated passengers). For the other arcs, we assume that there is no capacity 

constraint.  

Given a timetable, the arc capacities, and a set of multi-period origin-destination pairs, the event-

activity graph describes the (dynamic) supply of a schedule or timetable-based transit network. The 

distribution of demand, now involving mode (e.g., train, bus, tram) and route choices, over the 

network (the quasi-static transit assignment) cannot be formulated along the lines of Wardrop since 

it may not exist, hence we need to rephrase the conditions (12a) and (12b) to explicitly account for 

vehicle capacities. We adopt the (user) equilibrium notion of Correa et al. (2004) to do so. A user 

equilibrium is defined as the demand distribution where capacity is not exceeded, and each traveller 

is assumed to be satisfied with their choice in the sense that a unilateral change is either not possible 

since boarding will be denied or will not lead to an improvement in generalized cost. We introduce 
therefore 𝑐+

𝑟 → 𝑞 (𝑓), the anticipated route cost on q (conditional on f) when unilaterally switching 

from 𝑟 to 𝑞. This function is, in contrast to 𝑐𝑟(𝑓), no longer continuous but only lower semicontinuous, 

i.e., it ‘jumps’ to infinity if capacity is reached when a passenger tries to board (see also Bernstein & 

Smith, 1994). We do not formally introduce this function here, but the function assumes that (i) 

boarding a service included in q is considered possible if the same service is also included in p, and 

(ii) boarding might be impossible if capacity is reached, while in practice a passenger might arrive 

earlier and still be able to board. The latter assumption, however, can be relaxed in a fully dynamic 

context.  

We can generalize the mixed equilibrium conditions of (12a) and (12b). In fact, in our schedule-

based public transport setting, flow  (𝑓̅𝑠, 𝑓̅𝑛, 𝑥̅) ∈ ℱ with corresponding path cost vector 𝑐(𝑓̅), 𝑓̅ =

𝑓̅𝑠 + 𝑓̅𝑛, is said to be in mixed equilibrium if for all 𝑤 ∈ 𝒲, 𝑟 ∈ ℛ, in addition to 𝑥̅ ≤  κ, the following 

conditions hold:    

𝑓𝑟̅
𝑛

> 0 ⇒ 𝑐𝑟(𝑓̅) ≤ 𝑐+
𝑟 → 𝑞 (𝑓̅),                 for all 𝑞 ∈ ℛ𝓌 ∖ { r }   (13a) 

𝑓𝑟̅
𝑠

> 0 ⇒ 𝑐𝑟(𝑓̅) ≤ 𝑐+
𝑟 → 𝑞 (𝑓)̅(1 + 𝜀),    for all 𝑞 ∈ ℛ𝓌 ∖ { r }  (13b) 

The optimization problem (𝑃) to determine the best-possible social travel advice is adapted 

accordingly. For the sake of numerical experiments, problem (𝑃) can be reformulated as a mixed-

integer program, and in our case solved using the GUROBI optimization software.  

We perform numerical experiments using cases based on the urban public transport network of the 

Twente region in the Netherlands. Through these experiments we aim to quantify the potential impact 

of social travel advice strategies on network performance. We specifically consider the bus lines that 

operate in the municipality of Enschede, where a few lines – particularly from and to post- high-

school educational institutions - incidentally experience overcrowding issues.  

The case study examines a regular business day, and the scheduled timetable from 07:45 to 08:30, 

for which we identified 306 major OD pairs (combination of origin stop, destination stop, and desired 
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departure time). We adopted a bureau of public roads-like generalized cost function (Gentile & Nokel, 

2016), with the ‘free flow’ time equal to the scheduled travel time, α =  1/32 and β =  4 for driving 

and dwelling arcs, to model the in-vehicle disutility as an increasing function of the occupancy. We 

assume a seating capacity of 40, and an incremental capacity of 80. The other arcs in the network 

have a fixed cost corresponding to the actual travel time.   

We compare a baseline scenario (i.e., user equilibrium), the system optimum, and the demand 

distribution because of social travel advice using the total generalized costs as an indicator for 

network efficiency. Figure 4 shows the relative efficiency gain compared to the network performance 

in user equilibrium, for a range of scenarios regarding the indifference band ε, and the fraction social 

travelers.  

The results in Figure 4 show that in system optimum network efficiency improves by 1.1% compared 

to user equilibrium. Comparable network performance can be achieved if 70 to 100% of the riders 

are willing to act socially and are willing to take a detour that is at most 20% worse (in generalized 

cost) compared to the best-possible available alternative. If social travellers only accept detours of 

5 or 10%, the maximum possible improvement in network efficiency is 0.6 and 0.9%, respectively. 

In case a smaller share of passengers is making socially beneficial travel choices, improvements 

decrease but, at the same time, the maximum gradient of improvements is the largest under low 

fractions of social passengers. In fact, for a given acceptable tolerance, 25% of the improvement in 

efficiency can already be obtained with 20% of the travellers willing to act for society at large.   

 

Figure 4 Social Routing 

3.3 Prediction models for Demand Responsive Transport  

3.3.1 Proposed innovation 

The research and technology development will focus on developing algorithms for predicting the 

demand for specific transport services with reliable metrics. The idea is to provide the “observability” 

of demand prediction to feed the optimization algorithms for traffic routing & fleet operation. The 

second part of the development is focused on developing algorithms to process optimization in real-

time – processing traffic events in real-time (change in demand, environmental change, etc.). In such 

a way, the intercity transport infrastructure will augment to gain elasticity and adaptability for real-

time DRT services.    

To build such a complex model we need concrete and reliable data as well as real-life use cases to 

test the model. The GoOpti Intercity infrastructure is addressing this challenge. Within 

CONDUCTOR, GoOpti will provide its IT infrastructure, network of partners and vehicles on the 
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routes Slovenia - Italy, Slovenia - Croatia and Slovenia - Austria to test and demonstrate advanced 

simulation models in real-life conditions as a DRT service. 

3.3.2 Specifications 

In this particular use case, our objective is to address the challenge of forecasting expected demand 

within the context of GoOpti's services. Our primary focus will be on predicting the number of 

passengers scheduled for drop-off during specific time slots at designated locations. To illustrate, let 

us consider the scenario of GoOpti's transportation service between location A and location B. The 

model's task is to anticipate the number of passengers who will be dropped off at location B (picked 

up on the route from location A) on a given date and time. The expected three routes that will be 

used in the use case are the following: 

• Maribor – Vienna Airport 

• Ljubljana – Zagreb Airport 

• Ljubljana – Trieste Airport 

All three routes are connections to airports located in the neighbouring countries of Slovenia. The 

forecasting will be applied in both directions from the city to the airport (passengers are travelling 

abroad) and from the airport to the city (passengers are travelling to Slovenia). 

To enhance the accuracy of our predictions, we will leverage various data sources, each providing 

valuable insights: 

• Weather Information: Historical weather data, available since 2015, can be integrated into 

our predictive model. 

• Flight Information: Commencing from September 2023, we have been collecting data related 

to flights, enriching our predictive capabilities in the future. 

• Traffic Information: Data sourced from the Motorway Company in the Republic of Slovenia 

(DARS) will be utilized, offering valuable insights into traffic patterns. 

• GoOpti Product Orders: Comprehensive data on GoOpti product orders, accessible since 

2014, will serve as a fundamental resource for our modelling efforts. 

Before delving into the model training phase, the collected data will need to undergo preprocessing 

steps. This includes cleaning, aggregation tailored to the specific goal (considering resolution), and 

the generation of relevant features such as lag, workdays, holidays, weekends, etc. This meticulous 

preprocessing ensures that the data is well-prepared and suitable for subsequent model training. 

Two distinct types of models will be developed, aligning with the characteristics of the available data 

sources: 

1. Short-Term Prediction Model (Up to 14 days): This model will harness GoOpti product orders 

data along with the additional sources (weather, flight, traffic information) to enhance 

prediction accuracy within a two-week timeframe. 

2. Long-Term Prediction Model (Up to 1 Year): Focusing on extended forecasting, this model 

will solely rely on GoOpti product orders data, tailoring its predictions for periods extending 

up to a year. 

By employing this dual-model approach, we aim to provide nuanced and accurate predictions, 

catering to both short-term and long-term planning needs within the dynamic landscape of GoOpti's 

transportation services. 
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The specifications for this use case can be summarized as follows. The task is to train a model for 

predicting the number of passengers, while fulfilling the following requirements: 

• Predictions are limited to passengers’ that have a drop-off during specific time slots at 

designated locations (defined by predetermined routes explained above). 

• The pickup or drop-off needs to be considered as originating from the city if the actual location 

is located within 30 km of the city centre. 

• The predictions need to be made for both directions of the route. 

• The prediction resolution will be predefined (1 hour or more). 

• Data that can be used for training and testing of the models is limited to GoOpti’s own 

historical data in potential combination with weather, flight, and traffic information. 

• Two types of predictions are expected, short term up to 14 days and long term up to 1 year. 

 

3.3.3 Progress of the work performed 

In the ever-evolving landscape of data analytics and predictive modelling, various methodologies 

have been rigorously researched and evaluated to identify optimal models for forecasting tasks. 

Among the prominent contenders, XGBoost, Random Forest, Neural Networks including LSTMs and 

WaveNet, Wavelets Features, Linear Regression, Koopman Analysis, and treating the problem as 

zero-inflated regression with a 2-fold approach have emerged as leading techniques for predictive 

analytics across diverse domains. These models have been extensively studied and scrutinized, 

aiming to harness their unique capabilities in handling complex datasets and providing accurate 

predictions. Through a careful examination of their underlying principles, distinct features, and 

empirical performance, we have sought to uncover their respective strengths and limitations. The 

main characteristics of the mentioned approaches are the following. XGBoost stands out for its 

regularization techniques that reduce overfitting and its capacity to handle missing data. It also has 

the ability to handle a variety of data types and has been widely used in various machine learning 

competitions. Random Forest is known for its ability to handle large amounts of data, high 

dimensionality, and the potential to deal with missing values. It also provides a measure of variable 

importance, making it useful for feature selection. LSTMs are known for their ability to capture long-

term dependencies in sequential data and are commonly used in tasks such as natural language 

processing and time series analysis. WaveNet, on the other hand, is specifically designed for 

generating high-quality raw audio waveforms, making it highly effective in applications like speech 

synthesis. Wavelet analysis allows for multi-resolution analysis of signals, enabling the identification 

of localized changes in data both in the time and frequency domains. This makes it effective for 

analysing signals with non-stationary and transient characteristics. Linear regression is simple and 

easy to interpret, making it a popular choice for initial modelling. It provides coefficients that represent 

the relationship between the dependent and independent variables, enabling the understanding of 

the direction and strength of the relationship. Koopman analysis provides a way to study the 

dynamics of complex nonlinear systems through a linear framework, enabling the use of powerful 

linear tools for analysis and control. It allows for the understanding of the underlying dynamics and 

behaviour of complex systems. The 2-fold approach likely involves an initial step of identifying excess 

zeros and a subsequent step for modelling the remaining count data. This approach enables the 

accurate modelling of data with excessive zeros, providing more reliable estimates and insights 

compared to traditional regression methods. 

In the realm of predictive modelling and time-series analysis, the utilization of diverse features plays 

a crucial role in enhancing the accuracy and robustness of forecasting tasks. Among the array of 
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feature types, certain key elements have garnered significant attention for their ability to capture 

temporal dynamics and contextual nuances within the data. Lag features, instrumental in 

encapsulating historical trends and patterns, enable models to account for past dependencies and 

temporal relationships. On the other hand, the incorporation of holiday features allows for the 

consideration of specific dates with exceptional societal or cultural significance, facilitating the 

modelling of unique behavioural shifts or anomalies associated with these events. Furthermore, the 

inclusion of date features, encompassing various temporal components like the day of the week, the 

week of the year, or the time of day, equips models with the capability to discern recurring patterns 

and seasonality, thereby enhancing the comprehension of temporal variations and cyclical trends. 

Additionally, the integration of moving average features aids in smoothing out short-term fluctuations, 

emphasizing long-term trends, and mitigating the impact of noise, ultimately facilitating a more 

refined understanding of underlying patterns and trends within the data. Leveraging these diverse 

feature types collectively contributes to a more holistic and nuanced approach in predictive 

modelling, empowering analysts to derive more accurate and insightful forecasts for a wide range of 

applications. 

In the realm of data pre-processing for complex analysis tasks, several key techniques have 

emerged as instrumental in refining the data to ensure optimal model performance and accurate 

insights. Scaling, a pivotal pre-processing step, facilitates the standardization of numerical features, 

ensuring that they are on the same scale, thereby preventing any particular feature from dominating 

the learning process due to its larger magnitude. This crucial process aids in stabilizing model 

convergence and enhancing the interpretability of the resulting analyses. Detrending, another 

essential pre-processing technique, involves the removal of underlying trends or patterns from the 

data, enabling the isolation of the core fluctuations and variations that are of primary interest. By 

eliminating long-term trends, detrending helps focus the analysis on the inherent cyclical and 

seasonal components, thereby facilitating a more accurate understanding of the underlying 

dynamics and fluctuations within the data. The identification and removal of outliers assume 

paramount significance. By systematically detecting and eliminating anomalous data points that may 

skew the analysis, outlier removal ensures that the resulting insights accurately reflect the actual 

trends and patterns in the data. Particularly in cases where anomalies or data inconsistencies may 

arise due to reporting errors or irregularities, the application of outlier removal techniques is crucial 

in maintaining data integrity and fostering a more accurate assessment of the trends. Employing 

these pre-processing techniques collectively serves to enhance the robustness and accuracy of data 

analyses, empowering researchers and analysts to derive meaningful and reliable insights from 

complex and dynamic datasets. 

In the pursuit of forecasting with a horizon extending up to one year ahead, an extensive analysis of 

the above-mentioned diverse forecasting models, feature engineering techniques, and pre-

processing methodologies is being performed with the goal of capturing the intricacies and dynamics 

inherent to the data. Furthermore, we are also exploring hierarchical forecasting methodologies that 

can enrich the forecasting process, enabling the hierarchical modelling of complex data structures 

and the generation of forecasts at various aggregation levels. Through consequent comprehensive 

analysis of multi-level forecasting hierarchies, this approach can provide a holistic understanding of 

the interdependencies and interactions within the data, empowering analysts to generate accurate 

and granular forecasts for diverse forecasting horizons, including the extensive one-year horizon. 

Collectively, the integration of these advanced forecasting models, feature engineering techniques, 

pre-processing methodologies, and hierarchical forecasting approaches has culminated in a 

comprehensive collection of data for conducting multi-horizon forecasting tasks, enabling the 

derivation of accurate and insightful predictions on forecasting tasks extending up to one year ahead. 

The research and evaluation of all these approaches are still ongoing, continually exploring the most 

intriguing avenues and developments within the field of forecasting. With the ever-evolving 
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landscape of data science and predictive analytics, the investigation of these methodologies remains 

dynamic, driven by a persistent quest to uncover novel insights and advancements that can further 

refine and enhance the predictive modelling process. As we delve deeper into the intricacies of these 

forecasting models, feature engineering techniques, and pre-processing methodologies, we 

continue to uncover new possibilities and refine existing approaches, aiming to unlock greater 

predictive accuracy. 

3.4 Optimisation techniques for urban logistics 

The demand of urban goods delivery has increased in the last ten years. The adoption of e-

commerce is responsible for this shift of traffic due to last-mile delivery. To manage and balance this 

urban traffic bump CONDUCTOR will investigate and propose solutions for last-mile delivery based 

on the integration of urban distribution of goods with DRT. 

3.4.1 Proposed innovation 

In this section solutions for the integration of urban logistics into a DRT system are proposed. To 

that end, two different approaches to this problem will be developed by Deusto and TUM. To test 

and validate the approaches, simulations are to be performed. Therefore, two different simulation 

tools are provided by Aimsun, Aimsun Next and Aimsun Ride, that will support the solutions from 

TUM and Deusto, respectively. The demand data needed is generated by Nommon, which is 

developing two models to characterise professional and last-mile delivery trips and to estimate the 

DRT demand, which will be used as inputs for the simulations. 

This activity will investigate and design urban logistics networks with potential intermodality, making 

use of data from the logistics sector combined with sources of information on mobility and activity of 

the population and its processing using different optimisation algorithms.  

The service will address solutions aimed at the optimal integration of DRT for urban freight 
distribution. For that, in first place the DRT demand is estimated. To that end, Nommon is developing 
an algorithm whose goal is to estimate the demand for DRT with CCAM (DRT-CCAM). Since there 
are currently no CCAM services in urban areas, the demand for carsharing services is used as a 
proxy of the demand for DRT-CCAM services, as these are considered the most likely candidates to 
evolve into DRT-CCAM when they become a reality (Narayanan et al., 2020). 

 

Prior to the development of the DRT-CCAM demand estimation model, a literature review was 
performed to identify the user’s sociodemographic characteristics related to the CCAM acceptance 
and adoption (see deliverable D1.1 Report on stakeholder requirements, user needs and social 
innovations). Some of these user characteristics (namely, age, gender, and income level) are 
considered for the estimation of DRT-CCAM demand. To improve this characterisation, the user’s 
profile will be enriched with additional sociodemographic information to include two more features: 
household size and car ownership, which are also relevant for adoption. 

This approach will allow estimating demand for different levels of CCAM penetration. Using this 
estimation, we will identify valley demand hours for certain DRT-CCAM services, which can be used 
by logistic operators to deliver their goods. 

Next, the urban freight delivery is integrated into the DRT-CCAM service. The DRT users are 

assumed to always announce their OD pair dynamically and they need to be picked up within a 

maximum waiting time to maintain certain service quality. On the other hand, the freight requests are 

assumed to be significantly less time-critical. The main challenge is how to dynamically form vehicle 

routes that pool passenger requests and simultaneously deliver (or pickup) freight without 

significantly compromising the service quality of passengers. The overall problem complexity is 
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further increased by longer service time windows of the freight requests. Practically, freight requests 

would at least require certain time estimations (ranging in hours) to make sure that handlers of the 

freight are available during the time window. Thus, we will also investigate how time-window 

estimations for freight requests could be incorporated into the developed optimization method. The 

impact of above solutions on the overall transport network (e.g., average travel times, total vehicle 

travelled distance, total vehicle travel time, and total vehicle emissions, indicators that are expected 

to be reduced by this strategies), in particular for the area of the Madrid ring road where the Aimsun 

Model is deployed, see Urban logistics Use Case (UC3) description in deliverable D1.3 (Detailed 

use-case specification and their KPIs) for more details), will be evaluated supported by the Aimsun 

simulator platform and considering different demand-supply balancing strategies aiming at the 

optimisation of the performance of the overall transport network. 

3.4.2 Specifications 

The solution aims to obtain an algorithm for the distribution of goods and people, and we need to 

dispense with a transport model that allows the simulation of route optimisation models. There are 

some general requirements to be met by the solution obtained, among them: 

• The solution must ensure the safety of freight and passengers. 

• The solution must comply with existing transport rules and regulations. 

• The solution must ensure that passenger transport timetables are adhered to, and that 

people's mobility is prioritised. 

• The solution must adhere to the delivery window of the shipments. 

There is also a set of requirements that can be considered for simulating the solution, which can 

allow us to verify the correct functioning of the proposed algorithm and possible improvements in 

parameter adjustment. It would be important to have prior knowledge of the expected demand and 

the different passenger transportation services and their schedules. In this sense, having a detailed 

understanding of the last-mile goods delivery service operation model is crucial. Additionally, the 

indicators that allow measuring the impact of the obtained solution are among the main requirements 

to define. 

For the implementation of the proposed solution in a real case we must consider the following 

requirements: 

● Governance would be necessary to ensure the regulation of the different services and the 
interaction between the parties. 

● Cooperation and understanding on the part of freight logistics operators and passenger 
transports. 

● Security and protection of the system against cyber-attacks and critical infrastructures, 
whereby the system obtained must comply with security and cyber-security standards. 

● Adaptation of the vehicle infrastructure to enable mixed passenger and freight transport. 

● Orchestrate a secure system of information transfer between the different stakeholders.  

3.4.3 Progress of the work performed 

In accordance with the established work plan and framed especially in task T3.4: Dynamic 

optimization, the analysis and design tasks of the optimization techniques that support the proposed 

innovation and the Use Casa 3 have already begun with an exhaustive analysis of the techniques 

reviewed in Section 3.4.2 and the definition of the models relevant in the context of CONDUCTOR. 
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Two models were proposed based on the experience in solutions for transport optimization provided 

by Deusto and TUM. Both systems will be an evolution of existing developed solutions (Deusto’s 

Optimization Engine and TUM’s FleetPy). 

The main differences between FleetPy and the module from Deusto are related to demand modelling 

and time constraints. FleetPy allows modelling and defining the demand for both types of transport 

services whereas in the system developed by Deusto disaggregated demand for both people and 

goods is a required input, expected to come via demand models generated by Nommon. Also, 

FleetPy doesn’t consider the “time window” constraint for the pick-up of deliveries, however Deusto’s 

module does. This can be one of the main differences between both solutions, and after testing them 

in Use Case 3, the results of both modules can be assessed. 

Additionally, the CCAM demand model proposed by Nommon is also described in this section, as a 

preliminary step for Deusto’s Optimization Engine. A dedicated description of the proposed systems, 

with a comprehensive characterization of the model’s main modules is presented in the following 

subsections. 

3.4.3.1 Demand prediction for coordination with parcel delivery 

Nommon is developing a software solution for the characterisation, estimation, and prediction of 

urban passenger transport demand for new connected and autonomous DRT services. This 

development is aimed at providing a plausible passenger demand estimation of CCAM-enabled DRT 

services for different penetration levels of CCAM. This demand estimation will be used to identify 

passenger demand-valley periods for which the service overcapacity can be used for last-mile 

delivery and the design of optimal strategies for the coordinated transport of passenger’s and goods 

under different future scenarios. 

3.4.3.1.1 Data used 

Given that there are currently no CCAM services in cities, the characteristics of the demand for DRT-

CCAM trips are approximated using shared mobility demand data. Specifically, these correspond to 

demand data for carsharing services, as they are seen as the most likely candidates to evolve into 

DRT-CCAM when such services become available. Carsharing demand data is provided by an 

aggregator of trip data from shared mobility services. These data are described hereon in the present 

document, as they had not been purchased yet at the time of the delivery of D1.2 (Specification of 

the future mobility system and data sources) document in which they should have been included.  

The information provided the number of trips, number of available vehicles, number of vehicles used 

by city and day, geolocation information of the vehicles and information on the trips performed by 

the vehicles in the city (start and end complete date, distance and start and end coordinates). 

Carsharing data to be used in this project covers all the car-shared mobility services in Madrid Region 

for a whole year (from June 2022 to May 2023, both included). These car-shared mobility services 

are: 

• Voltio, for which data in the Madrid Region are available from 2023-02-14. 

• Free2move, for which data in the Madrid Region are available from 2022-08-12. 

• Goto, for which data in the Madrid Region are available from 2022-12-09. 

• Sharenow, for which data in the Madrid Region are available from 2022-03-15. 

• Wible, for which data in the Madrid Region are available from 2020-12-06. 

• Zity, for which data in Madrid Region are available from 2020-12-06. 

Each of these services has a different area of operation (geofence) in the Madrid Region. Most of 

Madrid inner ring road urban area is covered by all 6 services. Figure 5 shows the area of operation 

of Voltio carsharing service in Madrid, as stated on their website, as an example. 
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Figure 5 Voltio carsharing service area of operation in Madrid Region (Voltio website) 

Carsharing demand data are complemented by additional data from shared mobility services, public 

transportation, general mobility matrices (from mobile network data MND), weather patterns, socio-

demographic information and land use data to achieve more accurate characterisation, estimation 

and prediction of passenger transport demand for new connected autonomous DRT services. See 

Deliverable D1.2 (Specification of future mobility system and data sources) for more details on these 

data sources. 

3.4.3.1.2 Methodology 

3.4.3.1.2.1 Carsharing demand prediction model 

Firstly, a machine learning prediction model for carsharing services demand is trained with 

carsharing historic demand and data from other sources. This prediction shall be disaggregated at 

least at an hourly level to find valley periods of demand in subsequent developments. 

Due to the limitations in the areas of operation of each carsharing service, this model can only be 

trained with data from the areas covered by carsharing services in the Madrid Region. The main 

characteristics of each zone within this area of operation are considered (land use, general mobility 

demand, population density, socio-demographics, etc.) to train a model that is able to predict 

carsharing demand to/from zones outside of the areas of operation of the considered carsharing 

services. This demand prediction will subsequently be pondered based on various DRT-CCAM 

penetration scenarios. 

The steps for the calibration and application of the ML model predicting carsharing demand are 

shown in Figure 4 and described below: 

1. Initial analysis, pre-processing and cleaning: the first step is to analyse and clean the 

data to remove outliers (e.g. records of trips with unreliable speeds, etc.) and identify and or 

correct missing values. After this, data standardization is performed to facilitate data fusion, 

feature analysis and model training. 

2. Trip volume normalisation: since each of the carsharing services in the data has a different 

geofence or area of operation, a spatial trip volume normalisation is needed. Some areas 

may be underrepresented in the data, while some may be overrepresented, depending on 

the service availability. After applying this normalisation, the result corresponds to the real 
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carsharing demand, which is the addition of the satisfied carsharing demand and the latent 

carsharing demand. 

3. Data fusion: the real carsharing demand data is fused with external context data such as 

land use, population, socio-demographics, general mobility OD matrices from MND, etc. This 

allows to take into consideration external features for the prediction model training. 

4. Train and fit prediction model: the fused data is inputted to a machine learning regression 

model that predicts the volume of carsharing trips between each pair of zones for a specific 

time period according to the characteristics of both zones and the historic demand data. 

Several ML models will be designed and trained in order to find the ones with the best 

accuracy.  

5. Use model to predict new data: once the model has been trained and validated and has 

achieved the required accuracy metrics, it will be ready to be fed new data and make 

predictions of the carsharing trips given a set of zones and time periods. 

 

 

Figure 6 Carsharing demand prediction model methodology flowchart 

3.4.3.1.2.2 DRT-CCAM penetration scenarios 

Once a model that accurately predicts carsharing demand is built and working, the next step is to 

formulate various scenarios for DRT-CCAM penetration based on the carsharing demand 

predictions to obtain the DRT-CCAM target services demand. 

Various scenarios for DRT-CCAM penetration will be formulated and crafted based on observed 

travel patterns and user characteristics deduced from the predicted carsharing demand.  

To enhance the characterization of demand, user profiles may be further enriched with socio-

demographic data specific to CCAM usage, included in other developments. This enrichment 

process involves merging MND with survey data through machine learning techniques to extract key 

features that had been identified as relevant for DRT-CCAM adoption in deliverable D1.1 (Report on 

stakeholder requirements, user needs and social innovations), such as household structure and car 

ownership.  
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3.4.3.1.3 Technical implementation 

The carsharing demand prediction will be achieved through a supervised regression machine 

learning model. Different models will be tested in order to find the ones that adapt best to this specific 

prediction problem. Among the models to be tested are those commonly used for analysing temporal 

series, such as ARIMA or SARIMA ((seasonal) auto-regressive integrated moving average), 

alongside more generalized models like random forest, gradient boosting, and support vector 

machine. 

RFE (recursive feature elimination) will be used in order to find the relevant features that influence 

on the values to predict. RFE iteratively trains models with different feature sets, systematically 

identifying those that bear no impact on model accuracy and subsequently discarding them. 

Hyperparameter tuning will be performed to find the model parameters that provide the best model 

accuracy, without compromising performance or runtime.  

Following standard data science practices, the data will be split into three datasets: train, validation, 

and test. The training set will be used to train the model, the validation set will assist in fine-tuning 

parameters, and the test set will serve to evaluate the model's performance on unseen data. 

Depending on the model's performance and dataset volume, cross-validation might be incorporated. 

Cross-validation involves partitioning the dataset into complementary subsets, iteratively using 

different subsets for training and validation to maximize the use of available data while evaluating 

model performance across multiple splits. 

Several accuracy metrics will be used to evaluate the models' performance, including R-squared and 

mean absolute percentage error. These metrics will provide insights into the model's ability to explain 

variance and the percentage-wise accuracy of predictions, respectively, and may be used to 

compare the accuracy of different models both with train and validation data. 

3.4.3.1.4  Preliminary analysis 

This section shows the key insights from the carsharing demand exploratory data analysis. 

The carsharing demand data covers a whole year, in which there is a high variability of trip volume 

per month, as seen in Figure 7: 

 

Figure 7 Carsharing trip volume by month 
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Figure 8 shows the data segmented by date for four specific months. The initial month (September 

2022) serves as a standard representation without any significant festivities. In this month, a 

discernible trend emerges: carsharing services demonstrate reduced usage on Sundays, steadily 

increasing throughout the week and reaching peak usage levels, on Fridays.  

The impact of festivities becomes apparent in the 2023/04, 2022/12 and 2022/08 subplots of Figure 

8 where non-working days consistently correlate with decreased carsharing trip values. Additionally, 

August’s general pattern stands out notably, exhibiting significantly fewer trips compared to non-

summer months. 

 

 

Figure 8 Carsharing trip volume by date for September 2022, April 2023, December 2022 and August 

2022 

Analysing the carsharing demand data across hourly periods, Figure 9 reveals distinct peaks during 

morning, afternoon, and evening times as depicted in the graphs, which correspond to the expected 

typical urban transport demand peaks. Interestingly, the morning peak registers a lower volume of 

trips compared to the evening peak. This is probably because these services are predominantly 

utilized for non-work/non-study-related leisure trips, whereas the morning peaks are associated with 

mandatory commuting. 
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Figure 9 Carsharing trip volume by weekday and hour period 

When adding categorising carsharing trips by distance, the resulting distribution peaks at around 3 

km (Figure 10), which is consistent with the nature of carsharing trips and the areas of operation of 



Network load balancing and dynamic optimization technologies  

PU (public) | 1.0 | Final   Page 45 | 59 

these services. A significant volume of trips is grouped in trip distances close to 0. These probably 

correspond to trips that were not made, which suggest a need for a potential filter to correctly 

characterise the actual demand. 

 

Figure 10 Carsharing trip distance distribution 

Finally, Figure 11 focuses on the start location of each trip from the carsharing data. These have 

been plotted as a heatmap. The information is consistent with the population density and the service 

areas of operation. 

 

Figure 11 Carsharing trip origin location heatmap 

3.4.3.2 Optimization model for dynamic delivery planning 

This point aims to describe the design of an optimization model for the dynamic planning of last-mile 

logistics in combination with DRT. The main content of this subsection is dedicated to the 

descriptions of the mathematical models that have been used in the design and implementation of 

the Deusto dynamic last-mile logistics planner, therefore we are going to define the main concepts 
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around last-mile logistics optimization, which we have considered relevant in the context of the 

project. 

The solution model for last-mile transport optimization problems is considered a Rich Vehicle Routing 

Problem (RVRP) since it is a real-world problem and includes optimization criteria, constraints, and 

preferences. It is also a model that incorporates realistic optimization functions with different 

objectives, uncertainty in some components, dynamism, and a wide variety of real-life constraints 

related to time, distance, and the use of heterogeneous fleets. 

The RVRP model is defined as a graph 𝐺 = 𝑉, 𝐸, where 𝑉 are the set of n nodes representing the 

customers and 𝐸 is the set of arcs. The vehicle fleet can be modeled as heterogeneous (i.e., bikes, 
scooters, motorcycles, cars, trucks, etc.), defined as 𝐾𝑓, where each vehicle will have a capacity 𝑄𝑓 

and will be located in a specific place.  The VRP model and constraints are presented below, 

considering vehicle capacities, time windows and pickups-deliveries.  

𝑀𝑖𝑛 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

(𝑖,𝑗)∈𝐼

       𝑥𝑖𝑗 ∈ {0,1}       ∀𝑖,𝑗∈ 𝐼 

Subject to: 

(14) 

∑ ∑ 𝑌𝑖𝑡

𝑡∈𝑇𝑖∈𝐼

= 1     ∀𝑖 ∈  𝐼  
(15) 

∑ ∑ 𝑃𝑖

𝑖∈𝐼𝑡∈𝑇

∑ 𝑥𝑖,𝑗

𝑖,𝑗∈𝐼

≤  𝑄𝑚𝑎𝑥 
(26) 

∑ 𝑥𝑖𝑗𝑘

𝑖∈𝐼

− ∑ 𝑥𝑗𝑖𝑘

𝑗∈𝐼

= 0          ∀𝑖𝑗 ∈  𝐼  
(17) 

Equation (14) refers to the objective function of the problem, whose purpose is to minimize the 

transportation cost, which can be a function of travel time or total distance travelled. Equation (15) 

is a constraint that aims to ensure that an order is served by only one vehicle. Equation (26) refers 

to the constraint that ensures that vehicles do not exceed their maximum capacity.  

The notation used for the formulation of the VRP is: 

• 𝑖, 𝐼: the index and set customers, 

• 𝑑𝑖,𝑗: distance (or travel time) between customers 𝑖 and j, 

• 𝑇: set of vehicles. 

Starting from the classical VRP model, we will add new components to define a model for iterative 

and integrated planning from the perspective of its application to last-mile logistics and according to 

the objectives of the project.  

These are mainly very complex problems where a large variety of constraints must be considered, 

e.g. time windows constraint, capacity constraint, where dynamism and uncertainty are present, and 

where more than one objective must be optimized simultaneously. The following points will define 

the models of the different components that will be integrated into our proposal, improving the 
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existing optimization module according to the functional requirements and the defined use cases for 

the CONDUCTOR project. 

The design of the new models developed in Task 3.4 will allow the optimization tool to work in an 

integrated way, combining the transportation of people with last-mile order deliveries. This will be 

based on three very important optimization paradigms. Firstly, iterative and dynamic optimization, 

which will allow us to consider the impact of the generated freight delivery routes in the general 

mobility and/or the current traffic conditions that may modify the initial planning of routes, such as 

vehicle breakdowns, traffic collapse in cities at peak times, etc. Secondly, multi-objective 

optimization, which will allow us to consider several objectives or performance indicators that can be 

optimized simultaneously, such as distance, cost, time, emissions, waiting times, etc. Finally, we will 

include robust optimization, which will allow us to introduce uncertainty in some elements of the 

model (travel times and service times for people), and to adjust the solutions to possible changing 

and uncertain conditions. 

3.4.3.2.1 Demand and Time Dependence 

Customer demand refers to a customer's order, that must be met by a vehicle, which knows in 

advance the location of the customer. Autonomous demand-responsive transportation will be used 

to provide this service to the customers. For this use case, the optimized DRT service also gives 

service to freight deliveries when the demand of passengers for DRT is low. Thus, passengers and 

freight could book a slot in the service. 

The route optimization system that Deusto will develop for CONDUCTOR allows the definition of 

both pick-up and drop-off time windows for both passengers and goods. This allows modelling 

reservation-based vehicle-sharing systems and/or ensuring quality of service in last-mile logistics. 

The model will include information on demand (weight, volume), pickup or delivery time windows, 

and personalized preferences of the recipients in terms of pickup and delivery time windows. 

𝑡𝑤𝑠𝑡𝑎𝑟𝑡𝑖
≤ 𝑠𝑡𝑖

≤ 𝑡𝑤𝑒𝑛𝑑𝑖
− 𝑠𝑡𝑖

"  (18) 

∑[𝑡(𝑖,𝑖+1),𝑗 + 𝑤(𝑖,𝑗) + 𝑠𝑖,𝑗]

𝐼

𝑖=0

≤ 𝑡𝑚𝑎𝑥 

(193) 

𝑥𝑖𝑗
𝑘 (𝑦𝑖

𝑘 + 𝑔𝑖 + 𝑡𝑖𝑗(𝑦𝑖
𝑘 + 𝑔𝑖)) ≤ 𝑦𝑗

𝑘 (20) 

• 𝑡𝑤𝑠𝑡𝑎𝑟𝑡𝑖
: start of the time window for the availability of customer 𝑖 

• 𝑡𝑤𝑒𝑛𝑑𝑖
: end of time window for the availability of customer 𝑖 

• 𝑠𝑡𝑖
: service time of the customer 

• 𝑦𝑖
𝑘: service start time for customer 𝑖 served by vehicle 𝑘 

• 𝑔𝑖: service time in customer 𝑖 

Equation (18) is the constraint that aims to ensure that each customer's order is picked-up or 

delivered within the established time frame, i.e., within the time window of pickup or delivery. 

Equation (193) indicates the maximum time constraint of the route, where all vehicles must complete 

the route without exceeding a set maximum time. Equation Error! Reference source not found. 

refers to the fact that the service start time must allow for travel time between customers. 
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3.4.3.2.2 Restrictions and Dynamism 

Constraints in vehicle routing models are a key element for the applicability of the models, and some 

of them are operationally related directly to the vehicle fleet, vehicle capacities, driver regulations, 

and time windows for deliveries or order pickups, among others. Managing last-mile logistics 

deliveries in urban areas is a very complex process, there are areas in cities where only pedestrians 

can circulate, and there are regulations on driving hours or access restrictions to certain types of 

vehicles in some areas (low emission zones, there is a maximum speed limit that can slow down 

deliveries, etc. 

In last-mile logistics in cities, there is a strong dependence on the conditions and infrastructure of 

each locality (e.g., loading and unloading spaces and narrow streets). Driving constraints in urban 

areas must be considered when generating routes for delivery drivers, and traffic congestion at 

certain times can cause delays in deliveries to customers, which can lead to high transportation 

costs. The model will develop mechanisms to dynamically adjust the routes according to events 

and/or road or traffic conditions. To do so, the solution will make use of the tools developed for the 

CAVs routing and the communication services deployed with the centralized TMC. The 

characteristics that the model must meet to include driving restrictions are described below. 

𝑡𝑤𝑠 ≤ 𝑡𝑤𝑒𝑛𝑑𝑖
− 𝑡𝑤𝑠𝑡𝑎𝑟𝑡𝑖

≤ 𝑡𝑤𝑒 (21) 

∑ ∑ 𝜎 𝑦𝑖,𝑗
𝑘

𝑖,𝑗 ∈𝐼𝑘∈𝐾

    𝜎 ∈ {0, 1} (22) 

• 𝑡𝑤𝑠: is the initial time window of a location with temporary access restrictions throughout the 

day, and 

• 𝑡𝑤𝑒: is the ending time window of a location with temporary access restrictions throughout 

the day. 

Equation () is the time window constraint that must be met by orders that are in a location with access 

restrictions at certain times of the day. Equation () refers to the fact that certain vehicles will have 

limited access to delivery locations considering defined driving restrictions in urban areas. 

3.4.3.2.3 Multi-objective 

In the models of vehicle routing problems, the main objective is to minimize the cost of the solution, 

either in distance or in time, although in real problems they are multi-objective in nature. In a problem 

like VRP the objective function can be diverse, for example: minimizing the total distance travelled, 

the total time required, the total cost of the route, the size of the fleet, and maximizing the quality of 

the services and the profit obtained. In this sense, it is often very complex to reach a balance when 

multiple objectives are identified, as some may conflict.  

In many real-life problems, such as food delivery, objectives like customer satisfaction and on-time 

delivery of orders are often more important than minimizing the distance travelled. To this end, a 

family of multi-objective VRPs (MOVRPS) was created, which will allow us to model real-life 

problems and extend the practical applications of this problem. For MOVRPs, a global optimization 

function can be defined that will have one or more objectives. These objectives, as already 

mentioned, are sometimes conflicting in nature, i.e., there are some trade-offs between them. The 

MOVRP can be stated as: 

𝑀𝑂𝑉𝑅𝑃 =  {
𝑚𝑎𝑥/𝑚𝑖𝑛 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), . . . , 𝑓𝑛(𝑥))

𝑠. 𝑡. 𝑥 ∈ 𝐷
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There are different objectives used in the MOVRP, among them is the objective related to the routes, 

which can be expressed in terms of distance or total travel time, and the number of customers visited. 

In addition, the objectives related to the resources available in the problem are known vehicles and 

available personnel; this objective is very important both economically and environmentally. For 

example, minimizing the number of vehicles used requires less investment costs and fewer 

emissions of polluting gases. Another objective could be related to time window constraints, since 

the violation of time windows can be minimized, with direct association to maximizing customer 

satisfaction. 

To deal with the simultaneous optimization of different objectives that may conflict, we will use the 

weighted sum approach in our model. In the weighted sum method, the objective is to associate to 

each objective function a weight coefficient, which will indicate the preference or relevance of each 

objective, and to minimize the weighted sum of the objective functions. An example of our objective 

function considering the weighted sum of its components is shown below:  

Optimized KPIs =  w1 ∙ distance + w2 ∙ time +  w3 ∙  emisions + . . . +wn ∙ KPIn  

 

3.4.3.3 FleetPy model description 

This section details the main optimization model used by FleetPy for fleet management. It also 

describes the optimization approach planned to be developed for the integration of logistics into DRT 

services. The combined services will be simulated for the city of Madrid (Use Case 3). 

The overall fleet management problem in DRT services falls under the category of SDVRP. FleetPy 

uses a dynamic simulation environment, where the ride requests are revealed over time. It uses two 

types of control algorithms for assigning vehicles to requests. The first type is quick response 

algorithms that respond to the requests as soon as they are revealed to the system. The second 

type accumulates the requests for a brief period and formulates an optimization problem for 

assigning vehicles to ride requests. The latter category is known as batch optimization, which is the 

focus of this section. 

FleetPy represents the street network as a directed graph 𝐺𝑜𝑝 = (𝑁𝑜𝑝, 𝐸𝑜𝑝) with nodes 𝑁𝑜𝑝 and edges 

𝐸𝑜𝑝. Each edge 𝑒 ∈ 𝐸𝑜𝑝 is associated with a distance 𝑑𝑒 and a travel time τ𝑒(𝑡). Since in 

CONDUCTOR, FleetPy is coupled with a microsimulation model offered by Aimsun Next, τ𝑒(𝑡) will 

be estimated from the information collected from the Aimsun Next simulation, as described in 

deliverable D2.1 (Specification and initial version of the adapted traffic and fleet management 

models). 

In each time step, FleetPy conducts four major steps: 

1. Boarding and alighting of passengers as well as pick up or drop off events of freight requests 

are registered by the fleet operator. 

2. New DRT customers enter the simulation and request a trip 𝑖 at the time 𝑡𝑖 by providing origin 
𝑜𝑖 ∈ 𝑁𝑜𝑝 and destination 𝑑𝑖 ∈ 𝑁𝑜𝑝.  

3. The operator evaluates whether it can serve the request within the given time constraints. If 

so, an expected pick-up time 𝑡𝑖
𝑝𝑢

 and drop-off time 𝑡𝑖
𝑑𝑜 is provided. 

4. Operators accommodate a subset of freight requests into vehicle schedules 

5. The operator assigns new/updated schedules to its vehicles. 

In order to assign customers to vehicles, FleetPy first builds a pool of schedules. A schedule is 
defined as a series of stops at network nodes 𝑁𝑜𝑝 where boarding and alighting processes of vehicles 

are conducted. In between these stops, vehicles are travelling on the fastest route in the network 
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𝐺𝑜𝑝. There are multiple possible permutations of stops as soon as more than one passenger is 

assigned to a vehicle 𝑣 ∈  𝑉, which are further increased when freight requests are also considered. 

The 𝑘-th possible permutation of stops for the schedule 𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓) serving all passengers and 

freight requests in the set 𝑅𝜓 and 𝑃ψ, respectively, is considered feasible if all the following conditions 

are satisfied: 

1. the drop-off stop succeeds the pick-up stop for each customer.  

2. the number of on-board customers never exceeds the vehicle capacity (𝑐𝑣).  

3. each customer is (supposed to be) picked up before a maximum waiting time 𝑤𝑚𝑎𝑥 elapsed. 

4. if the operator offers a pooling service, the maximum additional travel time must not exceed 

a detour factor 𝛿𝑚𝑎𝑥 compared to a direct trip. 

As described in deliverable D2.1 (Specification and initial version of the adapted traffic and fleet 

management models), FleetPy considers three levels of logistic integration: status quo (freight and 

passengers served by separate fleet), moderate (both served by same fleet, however, no parcel can 

be collected or delivered in between a passenger trip) and full (a freight request can also be collected 

or delivered in-between passenger trips). For a moderate integration to be considered, the 

optimization problem additionally uses the following constraint: 

5. while passengers are in the vehicle, no stop is allowed where only parcels are picked up or 

dropped off. 

Schedules are rated by an objective function 𝜙(𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓)). The goal of the fleet operator is to 

assign schedules minimizing the aggregated objective function for all its vehicles. 𝜙(𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓)) 

can be modelled in multiple ways, for example, currently FleetPy models the objective function as 

follows: 

𝜙(𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓))  =  𝑑(𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓)  −  𝑃 (|𝑅𝜓|  +  |𝑃𝜓|) (23) 

where 𝑑(𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓) refers to the distance to drive to complete the schedule. 𝑃 is a large 

assignment reward to prioritize serving customers and parcels over minimizing the driven distance. 

The high-level simulation flow of the whole process is given in Figure 13. 

To solve the above optimization problem for combined logistic and DRT service, FleetPy currently 

uses three heuristic approaches to build set of schedules that include freight requests. The 

fundamental concept of these heuristics is to only insert freight requests into vehicle schedules if the 

detour to pick up or drop off a freight request is small. The details and performance analysis of the 

heuristics is provided in (Fehn et al., 2023). 

Within CONDUCTOR, TUM will further improve these solution strategies. The following summarizes 

the main improvements planned: 

• Currently, the freight requests are not given any priority when the vehicle schedules are 

formed; rather, the freight requests are only served if the DRT happen to pass near the freight 

request locations while serving the DRT passengers. Therefore, a priority mechanism is set 

within the whole solution methodology for the freight requests that will also allow explicit trips 
for just serving the freight requests. Thus, a new objective function 𝜙(𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓)) will be 

formulated that allows this. 

• TUM will also study if it’s possible to provide certain time-window guarantee for freight 

deliveries. This replicates a similar strategy implemented by current freight services where 

the delivery of freight requests is given a rough delivery time-window, ranging in hours. This 

significantly raises the problem complexity, as this also includes forecasting which freight 

requests can be clustered in a way that the DRT vehicles are available in the neighbourhood 

to pick up and deliver the freight. 
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• Due to integration with the microsimulation model (Aimsun Next), the travel times between 

locations in the city are not static and can change after the assignment of vehicle schedules. 

Thus, it will also be studied how much these changing travel times can affect the performance 

of the developed strategies. Additionally, it will be investigated if vehicular routes that improve 

the traffic situation within the city can be actively taken. 

 

 

Figure 12 Integration levels of freight requests into DRT 

 

 

Figure 13 High level simulation flow of FleetPy integrated with freight requests 
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4 CONCLUSIONS 

This deliverable provides an exhaustive overview about four topics namely traffic management with 

signal vehicle couple control, social routing, prediction models for DRT demand and optimization 

techniques for urban logistics. It also explains the ongoing effort under the CONDUCTOR project to 

further extend the solutions for those above-mentioned problems. 

 

To address the problem of traffic management with CAVs we have developed a smart path 

distribution for the total demand of CAVs. For a specific OD pair, the smart optimization algorithm 

divides the total demand among the viable paths between the corresponding OD pair based on 

predefined KPIs like congestion, emission, travel delay and total energy consumption by the CAVs. 

This path distribution also supports de-centralized and hierarchical control for the distribution so that 

the transport system can have resilience. 

 

With respect to the DRT demand, GoOpti's current transport fleet planning optimizes based on 

experiences and algorithms from passenger reservations. The main innovation will be in 

incorporating demand forecasting to enhance optimization algorithms for traffic routing and fleet 

operations. This forward-looking approach is set to significantly improve the adaptability of real-time 

demand-responsive transport services, ensuring GoOpti remains agile in meeting both present and 

future passenger needs.  

 

Regarding the optimization of last-mile delivery, we are integrating the urban distribution of goods 

with DRT services. The solution aims to reduce the impact of delivery services in the city centres. 

For doing that we are adapting and improving already designed solution for efficient traffic 

management by using green vehicles and/or optimizing delivery routes. The results of this solution, 

adapted and improved to consider freight distribution, combined with the demand simulators and the 

use of CCAM pretend to improve the logistics meanwhile guaranteeing the quality of service for the 

passengers. Additionally, to model the combined operation of logistics and DRT, we are currently 

using heuristics to solve the combined optimization problem for fleet management. These are 

planned to be further improved. The main innovation in this regard is the inclusion of estimated 

delivery windows for the freight requests and realistic travel times based on Aimsun-FleetPy 

integration. 

To further enhance the network load balancing process, we also have included the concepts of social 

routing and indifference bands into network design, which will enable us to improve network 

performance without triggering significant changes in travel behavior as long as the level of service 

for (groups of) users is not substantially degraded. Within the CONDUCTOR project, we use these 

concepts in developing various system optimum models while suggesting socially desired routes to 

a portion of public transport riders, as well as real-time optimization of signal settings with embedded 

conditional signal priority to a group of road users to improve the network performance. Meanwhile, 

a minimum acceptable level of service and safety margins must always be ensured.  
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A. ABBREVIATIONS AND DEFINITIONS 

Term Definition 

ARIMA Auto-Regressive Integrated Moving Average 

ATSC Adaptive Traffic Signal Controllers 

CAV Connected autonomous vehicle 

CCAM Connected, Cooperative and Automated Mobility 

CNN  Convolutional neural networks  

CVSC Coupled Vehicle-Signal Control 

DRT Demand-Responsive Transport 

DSRC Dedicated Short-Range Communication 

DVRP Dynamic vehicle routing problems 

EMRAN Extended Minimal Resource Allocating Network 

FLO-EMS Fuzzy logic optimization energy management method 

GLOSA Green Light Optimal Speed Advisory 

HDV Human-Driven Vehicles 

LNS Large neighbourhood search 

LQF-MWM Longest Queue First Maximal Weight Matching algorithm 

LSTM  Long short-term memory 

MEH-PCEV Mechatronics-electro-hydraulic power coupling electric vehicle 

ML Machine Learning 

MND Mobile Network Data 

MPC Model Predictive Control 

N-BEATS  Neural basis expansion analysis for time series 

NP-hard Non-deterministic polynomial-time hardness 

OD Origin Destination 

OR Operational research 

PT Public Transport 

RBF Radial basis function 

RFE Recursive Feature Elimination 

RNN  Recurrent neural network 

SARIMA Seasonal Auto-Regressive Integrated Moving Average 

SVCC Signal Vehicle Couple Control 

Term Definition 

TFC Total-Factor Control 

TSCS Traffic Signal Control Systems  

TSP Travelling Salesman Problem 

UAV Unmanned aerial vehicles 

UC Use case 
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Term Definition 

V2I Vehicle-to-Infrastructure 

VRP Vehicle Routing Problem 

 

 

 

 


